Postdoctoral researcher at the University of Göttingen studying Theoretical Computer Science


I am currently a postdoctoral researcher working on problems in Combinatorics on words, in the Theoretische Informatik group, at the University of Göttingen. Previously I was a postdoctoral researcher at the Icelandic Centre of Excellence in Theoretical Computer Science at Reykjavik University studying distributed colouring problems. Prior to coming to Iceland, I was a postgraduate researcher at the Department of Computer Science, in the algorithms and complexity research group. My PhD thesis is titled Algorithmic and Combinatorial Problems in Crystal Structure Prediction, supervised by Prof. Igor Potapov, with secondary supervisors Matthew Dyer and Vladimir Gusev. I was funded by the Leverhulme Research Centre for Functional Materials Design. Previously, I completed my undergraduate studies at the University of Glasgow, with my masters project supervised by David Manlove. My full CV is available here. A graph of my Mathematical Genealogy can be found here.
Combinatorics on words: My interest on combinatorics on words has been primarily motivated on representing real world objects within a discrete space. In particular, I am been interested in capturing symmetry on words, such as reflective and, in the multidimensional setting, translational symmetries. Going forward I would like to extend more results from one dimension into the multidimensional setting.
kcentre problem for implicitly defined objects (such as graphs and words): Many classes of combinatorial objects can be represented as a weighted graph using some similarity measure to assign weights to the edges. For large graphs, for instance the set of all words of length n, generating the whole graph is impractical. To this end, we seek to take a set of representative samples from the graph. The idea behind the kcentre problem for implicitly defined graphs is to take k samples from some graph that allow the local properties to be determined. At present I have worked this problem for (multidimensional) words, using the overlap distance between subwords as the distance. Going forward I would like to study more complex objects.
Crystal Structure Prediction: During my PhD I have focused on the problem of predicting the structures of Crystals from first principles. My main results has been on the hardness of this problem, and more recently on approaches to solving similarly motivated problems. Move forward I would like to show undecidability for the general version of this problem
Temporal Graphs: I have recently began working on the problem of harmonious colourings in the setting of temporal graphs. The initial results have shown that this is a highly challenging problem even when the underlying graph is a path. The next steps in the project would be to look at solutions to this problem when each time step has been solved.
Stable Matchings: During my Masters (dissertation is available here), I worked on the stable matching problem for incomplete lists with ties. My main result was providing new bounds on the number of blocking pairs for maximum matchings in this setting. Moving forward I would be interested in obtaining similar results for more complex settings such as the kidney exchange problem.
SOFSEM 2023  The kCentre problem for necklaces 
ACTO Group Seminar 2022  The kcentre problem for classes of necklaces 
DCFS 2022  Ranking Binary Unlabelled Necklaces 
SAND 2022  Faster Exploration Of Some Temporal Graphs 
HI Mathematics Seminar Series 2022  Combinatorial Structures for CSP 
CPM 2021  Ranking Bracelets in Polynomial time 
BCTCS 2021  Ranking Bracelets in Polynomial time 
BCTCS 2020  Multidimensional Necklaces: Enumeration, Generation, Ranking and Unranking 
SOFSEM 2020  Crystal Structure Prediction by Vertex Removal in Euclidean Space 
BCTCS 2019  Crystal Structure Prediction by Vertex Removal in Euclidean Space 