

The *k*-centre problem for necklaces Duncan Adamson September 2022

Why Crystals?

- New materials are needed to deal with the challenges of the 21st century, from strong materials for manufacturing to better conductors for electrical systems.
- Crystals are a fundamental, and very common form of matter.
- Importantly, Crystals are **periodic** meaning that a lot of the properties of a crystaline material can be determined from a relatively small amount of information.

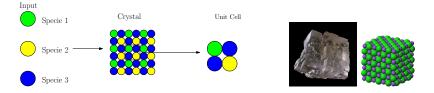
Crystals are everywhere

The k-centre problem for necklaces

Crystals

Definition (Crystals)

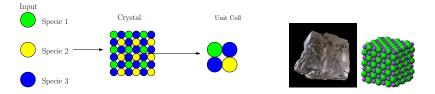
A **Crystal** is a material composed of an (infinitely) repeating **Unit Cell**.



Crystals

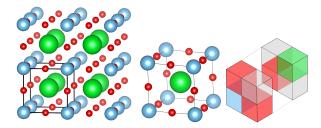
Definition (Unit Cells)

A **Unit Cell** is a contiguous region of space containing some set of **lons**.



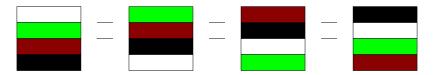
Discrete Crystals

- In this talk we are interested in **Discrete Crystals**, i.e. crystals where every ion is placed on a grid.
- In this model, every cell is either empty, or wholly occupied by an ion (or block of ions).
- For simplicity we assume that each cell can contain only 1 ion, and that each ion can fit into a single cell.



1D Crystals

- In this talk we are going to focus on **1D-Crystals**¹.
- These can be thought of a crystals made from precomputed 3D-blocks, with a high degree of symmetry along two dimensions.
- The main challenge in **uniquely** representing these structures is capturing **translational symmetry**.



¹C. Collins et al. "Accelerated discovery of two crystal structure types in a complex inorganic phase field". In: *Nature* 546.7657 (2017), p. 280.

The k-centre problem for necklaces

Introduction Necklaces k-centre problem de-Bruijn Sequences Online Centre Selection Future Work

Goal

Select a **representative** set of crystal structures from the set of all possible structures of a given size over a given alphabet of "blocks".

Problems

Question

How can we represent crystals uniquely?

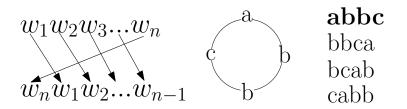
Question

How can we choose a **representative sample** from this representation?

The k-centre problem for necklaces

Necklaces

- In 1D the problem of representation is solved using **Necklaces**.
- Informally a necklace is a set of words that can be reached from each other by some **translation**.
- The translation (or cyclic shift) of a word w by some integer i returns the word w' where w'_i = w_{i-i \mod n}.



Some Notation for 1D Necklaces

For the remainder of this talk we use the following assumptions:

- Σ to denotes an alphabet, which we assume has size q.
- The Canonical form of a necklace ω (denoted ⟨ω⟩) is the Lexicographically smallest word w ∈ ω.
- *Nⁿ_q* denotes the set of necklaces of length *n* over an alphabet of size *q*, corresponding to the set of all crystal structures of length *n* over a library of *q* blocks.

Representative Samples

- To get a set of **representative crystals**, we want to choose a set of crystals that contain as many **local structures** as possible, in order understand the global energy space.
- As energy interaction is strongest at close range, by analysing local structures we can get a good idea about the full energy space.

Question How do formalise this as a mathematical problem?

Finding Representative Samples

- In order to find a set of representative samples, we turn to the **k-centre problem**.
- Informally, the k-centre problem asks us to select a set k vertices from a graph G = (V, E) minimising the function:

 $\min_{S\subseteq_k V} \max_{v\in V} \min_{s\in S} D(s,v)$

• Where S is a set of k vertices from V, and D(s, v) is the distance between some pair of vertices in G.

How can we measure the distance between necklaces?

The k-centre problem for necklaces

Question

The Overlap Distance for Necklaces

- Following our motivation of comparing **crystal structures**, we need to define a distance that represents structures with similar properties.
- As much of the energy in crystaline structures is due to **local** interactions, we use the number of **shared subwords** as a basis for measuring the similarity.

Definition

The **overlap distance** between two necklaces $\tilde{\mathbf{w}}$ and $\tilde{\mathbf{u}}$ is defined as the number of shared subwords between $\tilde{\mathbf{w}}$ and $\tilde{\mathbf{u}}$, normalised by the total number of subwords.

The Overlap Distance for Necklaces

	word <i>abab</i>	word <i>aabb</i>	Intersection
1	$a \times 2, b \times 2$	$a \times 2, b \times 2$	
2	ab $ imes$ 2, ba $ imes$ 2	$aa imes 1 \ ab imes 1,$	
		bb imes 1, ba imes 1	
3	aba $ imes$ 2, bab $ imes$ 2	aab imes 1, abb imes 1,	
		bba $ imes 1,$ baa $ imes 1$	
4	abab $ imes$ 2, baba $ imes$ 2	aabb imes 1, abba imes 1,	
		bbaa $ imes 1,$ baab $ imes 1$	
\mathfrak{O}			?/16

The Overlap Distance for Necklaces

	abab	aabb	Intersection
1	$\mathbf{a} \times 2, \mathbf{b} \times 2$	$\mathbf{a} \times 2, \mathbf{b} \times 2$	4
2	$\mathbf{ab} imes 2, \mathbf{ba} imes 2$	$aa \times 1 ab \times 1,$	
		bb imes 1, ba $ imes 1$	2
3	aba $ imes$ 2, bab $ imes$ 2	aab imes 1, abb imes 1,	
		bba $ imes 1,$ baa $ imes 1$	0
4	abab $ imes$ 2, baba $ imes$ 2	aabb imes 1, abba imes 1,	
		bbaa $ imes$ 1, baab $ imes$ 1	0
\mathfrak{O}			6/16

Challenges

- There are $O(q^n)$ necklaces in \mathcal{N}_q^n , so explicitly representing the graph is not feasible even for moderate values of n.
- Trying to determine the properties of a necklace as a crystal structure is computationally expensive.
- The graph is highly structured, with some vertices being much better than others.

Our Approach

- Our goal is to select a set of *k*-centres **maximising** the number of **distinct subwords** that appear in any centre.
- We do this by finding the longest length λ for which every word in Σ^λ can appear at least once in the set of centres.

Observation

Let $S \subseteq_k \mathcal{N}_q^n$ be a set of k necklaces such that every word in Σ^{λ} appears as a subword in at least one necklace in S. Then, every necklace in \mathcal{N}_q^n is at most $\frac{\lambda^2}{n}$ from the nearest centre in S.

The k-centre problem for necklaces

de-Bruijn Sequences

Definition

The **de-Bruijn Graph** of order *m* over a *k*-ary alphabet Σ is a directed graph of k^m vertices where each vertex corresponds uniquely to some word in Σ^m . There exists an edge from *v* to *u* if and only if $v : u_m = v_1 : u$.

Definition

A **de-Bruijn Sequence** of order m over a k-ary alphabet Σ is a cyclic word w of length k^m such that every word in Σ^m appears exactly once in w. In other words, w corresponds to a Hamiltonian circuit on the de-Bruijn graph.

Example of the de-Bruijn graph and sequence

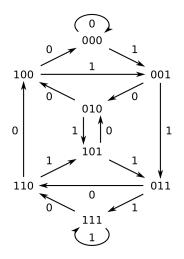


Figure 1: 00010111

The k-centre problem for necklaces

de-Bruijn Sequences

- De-Bruijn Sequences are a classic combinatorial object.
- There are strong results for generating² and decomposing³.

³T. Kociumaka, J. Radoszewski, and W. Rytter. "Computing k-th Lyndon word and decoding lexicographically minimal de Bruijn sequence". In: *Symposium on Combinatorial Pattern Matching.* Springer International Publishing, 2014, pp. 202–211.

The k-centre problem for necklaces

²Fred S. Annexstein. "Generating de Bruijn sequences: An efficient implementation". In: *IEEE Transactions on Computers* 46.2 (1997), pp. 198–200.

de-Bruijn Sequences

- De-Bruijn Sequences are a classic combinatorial object.
- There are strong results for generating² and decomposing³.
- Idea. We can use de-Bruijn sequences as a basis to compute a set of centres.

³T. Kociumaka, J. Radoszewski, and W. Rytter. "Computing k-th Lyndon word and decoding lexicographically minimal de Bruijn sequence". In: *Symposium on Combinatorial Pattern Matching.* Springer International Publishing, 2014, pp. 202–211.

The k-centre problem for necklaces

²Fred S. Annexstein. "Generating de Bruijn sequences: An efficient implementation". In: *IEEE Transactions on Computers* 46.2 (1997), pp. 198–200.

One Centre

- When k = 1, centre can be computed by finding the largest value of λ for which q^λ ≤ n, giving λ = ⌊log_a n⌋.
- This ensures that every word of length λ appears at least once in the centre.

Claim When k = 1, this process returns the optimal centre.

The k-centre problem for necklaces

- When k > 1, a slightly more sophisticated approach is needed.
- The main challenge is determining how to **partition** the de-Bruijn sequence.

- When k > 1, a slightly more sophisticated approach is needed.
- The main challenge is determining how to **partition** the de-Bruijn sequence.
- Idea. we need to build some redundancy to the centres.

Sequence: 0000010001100101011011011111 Centre Word 1 000001000110 2 011001010011 3 0011101101 4 110111110000

Figure 2: Example of how to split the de Bruijn sequence of order 5 between 4 centres. Highlighted parts are the shared subwords between two centres.

Claim The k-centre problem for \mathcal{N}_q^n can be approximated in $O(n \cdot k)$ time with an approximation factor of $1 + \frac{\log_q(k \cdot n)}{n - \log_q(k \cdot n)} - \frac{\log_q^2(k \cdot n)}{2n(n - \log_q(k \cdot n))}$.

Online Centre Selection

- In practice, it is useful to have a tool that allows us to add more centres after the initial set have been analysed.
- To solve this we turn to the **online** *k*-**centre selection** problem.

Online Centre Selection

- In practice, it is useful to have a tool that allows us to add more centres after the initial set have been analysed.
- To solve this we turn to the **online** *k*-**centre selection** problem.
- Assumptions:
 - Every centre that has already been chosen is **fixed**.
 - We do not know at the start how many centres are needed.

Solving the Online Centre Selection

- The first centre corresponds to the de-Bruijn sequence of length [log_q n].
- The next q centres correspond to the de-Bruijn sequence of length ⌊log_q n⌋ + 1.
- The $q^j + i^{th}$ centre corresponds to the i^{th} "centre" needed to cover the de-Bruijn sequence of order j + 1.
- This results in an algorithm that is at most a factor of 2 worse the than offline version.

Covering the de-Bruijn Graph

Question

Given an integer l > m, what is the smallest number j of length l cycles needed to cover the k-ary de-Bruijn graph of order m?

Paritial Results

Some experimental evaluation suggests that, in general, we need O(^{km}/_l) cycles. And normally we only need ^{km}/_l + 1.

de Bruijn (Hyper) Torus

- The same ideas from the 1D setting can be applied to the multidimensional setting, however doing so requires the ability to generate **de Bruijn tori** (the multidimensional analogue of the de Bruijn sequence).
- At present, we can approximate the de-Bruijn torus for any dimension, however this comes at the cost of slight less precision.
- **High Level Idea.** We treat each word of size $n_1 \times n_2 \times \cdots \times n_d$ as $n_2 \cdot n_3 \cdot \cdots \cdot n_d$ 1D-words of size n_1 .