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Overview

In this talk we present results on the exploration of 3 graph classes
within the temporal setting:

• Temporal graphs for which the underlying graph is a Cycle
with k-Chords can be explored in O(kn) days.

• Temporal graphs for which the underlying graph has a
(r , b)-division can be explored in
O
(
(n +max{r , b}(r + b))nbr log n

)
days. This can be applied

to show that:
• Temporal graphs for which the underlying graph has treewidth

of k can be explored in O(kn1.5 log n) days.
• Temporal graphs for which the underlying graph is planar can

be explored in O(n1.75 log n) days.

• There exists temporal graphs for which the underlying graph is
a sub cubic planar graph that can not be explored in faster
than Ω(n log n) days.
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Assumptions

• The agent may start the exploration from any vertex in the
graph.

• At each day, the agent may move along a single edge incident
to the vertex it is currently on.

• The exploration is complete when the agent has visited every
vertex in the graph.

• The graph is fully connected in every day.
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Cycles with k-Chords

• We show that any temporal realisation of a graph G that is a
cycle with k-chords can be explored in O(kn) days.

• Our results for exploring graphs with k-chords are based on
the technical Lemma 3.

• At a (very) high level, we show that the path between pairs of
vertices of degree ≥ 3 can always be explored in O(n) days.

• As there are k chords, the graph can be partitioned into at
most 2k paths between the vertices incident to each chord.

• Therefore, the whole graph can be explored in O(kn) days.
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Cycles with k Chords

Lemma 3
Let G = (G1,G2, . . . ,G2n) be an n-vertex temporal graph of
lifetime T = 2n, and let G be the underlying graph of G. Let
P = (v1, v2, . . . , vρ), ρ ≥ 1, be a path in G such that every vertex
of P, except possibly its endpoints v1 and vρ, has degree 2 in G.
Moreover, in every snapshot of G at most one edge of P is absent.
Then there exists a vertex v ∈ V (G ) such that all vertices of P
can be explored starting from v.
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Intuition behind Lemma 3
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(r , b)-divisions

Our second set of results use graphs with an underlying (r , b)
division. A graph G = (V ,E ) has an (r , b) division if there exists a
set S ⊆ V and a partition of G [V \ S ] into O(n/r) components,
each associated with a boundary set of vertices from S such that:

1. Each component within the partition contains at most r
vertices.

2. The boundary set of each component has at most b vertices.

3. The union of the boundary sets is S .

4. Every edge in G that has only one endpoint within a
component has the other endpoint in the corresponding
boundary set.
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(r , b)-division example
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(4, 1)-division example
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Exploring with (r , b)-divisions

Theorem 7
A temporal graph G, whose underlying graph has a (r , b)-division,
can be explored in O

(
(n +max{r , b}(r + b))nbr log n

)
days.
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Intuition for Theorem 7

• The main idea is to use a set of b agents based in the
boundary set.

• The goal is to show that each component can be explored in
O(max{r , b}(r + b)) days.

• As there are n
r components to explore, and we need at most n

days to move from one component to the next, we can
explore the full graph in O((n +max{r , b}(r + b))nr ) days
with b agents.

• Using the multi-agent to single-agent Lemma due to Erlebach
et. al. gives an upper bound on the exploration with a single
agent of O((n +max{r , b}(r + b))nbr log n) [1].
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Graphs with a treewidth of k

Lemma 8 (Adaptation of Lemma 4.4 in [1])

Any graph of treewidth at most k admits a
(
2
√
n, 6k

)
-division.

Theorem 9
An n-vertex temporal graph, whose underlying graph has treewidth
at most k, can be explored in O(kn1.5 log n) days.
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Planar Graphs

• Frederickson proved that all planar graphs admit a
(r ,O(

√
r))-division for any 1 ≤ r ≤ n [2].

• We can apply Theorem 7 with this division for r =
√
n:

Theorem 10
An n-vertex temporal graph, whose underlying graph is planar, can
be explored in O(n1.75 log n) days.
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Subcubic planar graphs

• Erlebach et. al. [1] show that there exists temporal
realisations of n-vertex planar graphs with maximum degree 4
which can not be explored in fewer than Ω(n log n) days.

• We strengthen this to show that there exists temporal
realisations of planar graphs with maximum degree 3 that
cannot be explored in fewer than Ω(n log n) days.

Theorem 13
There exist temporal realisations of n-vertex subcubic planar
graphs that cannot be explored faster than Ω(n log n) days.
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Intuition

• Our result relies on the edge contraction Lemma of Erlebach
et. al. [1], which states that given a graph G such that every
temporal realisation of G can be explored in t days, any graph
G ′ that can be constructed by contracting edges in G can also
be explored in t days.

• Taking as input some graph G that can not be explored in
fewer than Ω(n log n) days, we construct a graph G ′ with
maximum degree 3 such that G is the contraction of G ′.

• Using the edge contraction Lemma, G ′ can not be explored in
fewer than Ω(n log n) days without there being a way of
exploring G in fewer than Ω(n log n) days.

u v1

v2

v3

v4

u1

u2

u3

u4

v4

v1

v2

v3

Faster Exploration Of Some Temporal Graphs Duncan Adamson May 24, 2022 14 / 14



Introduction Cycles with k-Chords Underlying graphs with (r, b)-divisions Applications of (r, b) exploration Subcubic Graphs

Thomas Erlebach, Michael Hoffmann, and Michael Kammer.
On temporal graph exploration.
Journal of Computer and System Sciences, 119:1–18, 2021.

Greg Frederickson.
Fast algorithms for shortest paths in planar graphs, with
applications.
SIAM Journal of Computing, 16:1004–1022, 1987.

Faster Exploration Of Some Temporal Graphs Duncan Adamson May 24, 2022 14 / 14


	Introduction
	Cycles with k-Chords
	Underlying graphs with (r,b)-divisions
	Applications of (r,b) exploration
	Subcubic Graphs

