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Abstract

There are many challenges facing the global community that require the development of
new materials requiring specific properties. These range from the need to develop strong,
light weight alloys, to new insulating structures and flexible conductive materials. One
fundamental form of matter is the Crystal. A crystal is defined by a unit cell that is
periodically repeated infinitely in all dimensions. Each unit cell is a parallelepiped box
containing a set of ions at fixed positions. This periodicity forms the primary advantage
of crystals over other forms of matter, allowing the properties of a crystaline material to
be determined from the comparatively small structure of the unit cell.

The problem of determining the structure of a crystal is known as Crystal Structure
Prediction (csp). The goal is to take a set of ion species and determine the unit cell by
minimising the energy within the unit cell. The energy can be approximated as the sum
of pairwise interactions between the ions in the unit cell and every other ion in the crystal.
The pairwise interaction is determined by an energy function. The most commonly used
of these is the Buckingham-Coulomb function, which determines the energy by a function
of the distance and the species of the ions. The species of an ion can be thought of as the
class to which an ion belongs, determining the interaction between each ion.

This thesis looks at csp from a combinatorial and optimisation perspective. The first
key results are on the computational complexity of csp. Two models of csp are considered
in this direction; an abstraction based on constructing a unit cell of arbitrary size on a
discrete grid so as to minimise pairwise energy, and an abstraction based on removing
ions from an existing unit cell to minimise the pairwise energy. In both models, the energy
functions are restricted to general classes of functions containing the Buckingham-Coulomb
potential. The first model is shown to be undecidable in the general case, where the size
of the unit cell is unbounded, Further, the first model is shown to be NP-hard to solve,
as well as being NP-hard to approximate within any positive factor. The second model
is also shown to be both NP-hard to solve and NP-hard to approximate within a factor
of n1−ε where n is the number of ions in the initial unit cell for any ε > 0. These results
form the first formally proven hardness results for crystal structure prediction, providing
a foundational argument for the computational complexity of general techniques of csp.

Despite the limitations placed on the general models of csp by the hardness results,
this thesis also introduces a novel approach to csp in several settings. More specifically,
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we seek to construct a diverse sample of potential crystal structures from some implicit
description of the crystals. We do so by developing a combinatorial representation for
crystal structures. These structures seek to cover several symmetries inherent to the space
occupied by crystal structures. To this end, we provide the first relation of crystals to
necklaces and bracelets, classes of cyclic words. Beyond this connection, we formalise
several new classes of cyclic words, most notably multidimensional necklaces that are of
independent interest beyond the use by csp.

These classes are used as the basis of the sampling process. The sampling process is
formulated in the form of the k-centre problem for these combinatorial structures. Despite
the general hardness of both the k-centre problem and csp, we provide two strong polyno-
mial time approximation algorithms for several variations on crystal structures. The first
algorithm operates on the set of necklaces with no constraints placed on them, running in
linear time. The second algorithm works in several settings including both fixed-content
and multidimensional necklace running in polynomial time.

In order to use our second k-centre algorithm, a set of new results for ranking classes
of cyclic word are derived. The ranking problem asks for the number of members of some
ordered set smaller than a given member of the set. This thesis provides new algorithms
for ranking bracelets, fixed-content necklaces, necklaces with forbidden subwords, multi-
dimensional necklaces, and fixed content multidimensional necklaces. In addition to these
algorithms, we provide new efficient algorithms to count, generate and unrank multidimen-
sional necklaces.

Overall this thesis opens new links between crystal structure prediction and combi-
natorial and computational complexity questions in computer science. These new results
provide new insights for both the fields of material science and computer science. Notably,
our formal models of crystal structure prediction along with the corresponding results on
the computational complexity of these models provide a strong indication on the complex-
ity of more general crystal structure prediction models. Additionally, in trying to determine
new ways of representing crystals as combinatorial structures we have constructed several
new results regarding cyclic words. These include providing approximation algorithms for
the k-centre problem on several classes of cyclic words, running in polynomial time rela-
tive to the description of the graph, conditional on being able to rank and unrank each
class. The motivation provided by these approximation algorithms has in turn led to tech-
niques to rank several classes of cyclic words, including bracelets, necklaces with forbidden
subwords, necklaces constrained by linear equations, and multidimensional necklaces, the
latter two of which we introduce.
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Chapter 1

Introduction

Crystal Structure Prediction (csp) is a highly studied and very complex problem funda-

mental to the fields of both material science and chemistry. The most general versions csp

asks for the chemical structure for a given set of ions - electromagnetically charged atoms

- based on some model of interaction. At the same time, the discretised representation of

a crystal forms a natural class of combinatorial objects corresponding to cyclic words in

multiple dimensions. This leads to many natural algorithmic and combinatorial questions

such as how to count or generate the number of potential crystals for some given set of

elements.

Being able to solve csp efficiently would lead to an explosion in the development of new

materials. Despite this motivations, there has been a lack of work on csp as a theoretical

computer science problem. To the best of our knowledge the first formalisation of any

method of csp as a computer science problem was only published within the last year

[2, 7]. Additionally, we believe that this thesis is the first work to connect cyclic words to

crystals. This connection has lead to the identification of multidimensional necklaces as a

new class of combinatorial objects.

Our results can be split into three themes. First are the results concerning the hardness

of our formalisation of csp. We show that the problem is undecidable in the most general

case. Further we show that for several realistic restrictions csp remains NP-hard to solve

as well as NP-hard to approximate within any positive factor in polynomial time.

With optimally solving the problem being seemingly intractable, the second set of

results look at the idea of sampling a diverse selection of potential crystal structures. We

use the k-centre problem as a basis for the sampling approach. Here we use the set of

1
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potential crystal structures as the vertices for a graph, with edges weighted by a similarity

metric. These graphs are defined in terms of the set of ions, and size, resulting in an

exponential size of graph relative to the input. Despite this challenge, we provide a set of

approximation algorithms running in polynomial time relative to the size of the input.

The third set of results we provide are a set of combinatorial and algorithmic results on

various classes of cyclic words. More precisely, we look at the classes of Necklace, Bracelets,

Necklace weighted by solutions to Diophantine equations, and multidimensional necklaces,

the latter two being introduced in this work. Our primary results in all cases are algorithms

to rank and unrank members of these sets. Informally, the ranking problem asks for the

number of elements in a set smaller than some given element while the unranking problem

asks for the element with some number of elements smaller than it. Beyond general interest,

these results are utilised by our approximation algorithms.

The remainder of this section is structured as follows. In Section 1.2 we provide an

overview of the current state of csp, focusing on the current approaches to the problem.

Section 1.3 provides a brief overview of the k-centre problem. Section 1.4 looks at current

results on cyclic words that are applicable to the crystal setting. Section 1.5 provides an

overview of the main results from this thesis. Finally Section 1.6 provides an overview of

where the results from this thesis have been presented externally.

1.1 Key background

This section serves two key functions. First, we provide some key background results

for the main themes of this thesis. This serves to allow the reader to fully understand

our further results, without requiring further reading into related results. Secondly, we

highlight the connections between these results and our results. This section is divided into

three subsections. Subsection 1.1.1 provides results regarding crystal structure prediction.

Subsection 1.1.2 provides key results and definitions for the k-centre problem. Finally,

Subsection 1.1.3 provides the key results for classes of cyclic words.

1.1.1 Crystal Structure Prediction

While the problem of crystal structure prediction (csp) has been highly studied from the

prospective of both chemistry and materials science, there has been very little work on

csp from a computer science point of view. At a high level, csp takes as input some set
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of ions, and asks for the crystal structure corresponding to the given set of ions. A crystal

structure is defined by a period called the unit cell. Each ion belongs to a class called

a species, determining the properties of the ion. In this way, the unit cell is a periodic

mapping from some set of ion species to the space R3. In the discrete setting, the unit cell

instead maps to some grid, generally the integer grid Z3. In the most general formulations

of csp the size and shape of the unit cell is left open, however bounding the size is a

common restriction for many cases of csp.

Crystal structure prediction can be thought of as the problem of finding the “best”

configuration of ions within a three-dimensional box. The quality of a configuration is

determined by the pairwise interaction energy between every pair of ions. The pairwise

interaction is determined by an energy function, with a negative energy corresponding to

the ions attracting each other, while a positive energy corresponding to a repulsion between

the ions.

A comprehensive overview of the current state of csp from the materials science per-

spective is provided by Oganov [75]. To the best of our knowledge, there has been only

two publications formalising csp as a computer science problem. First has been our own

work [2], representing csp as a weighted graph problem where the goal is to select the set

of vertices forming a minimum weight clique. A similar formulation of csp was used by

Antypov et al. [7] who provided heuristic results for csp.

1.1.2 The k-Centre Problem

The k-centre problem is a classic computer science problem. The k-centre problem takes

as input a graph G = {V,E} and integer k, and asks for the set s ⊆ V of k vertices from G

minimising the objective function maxv∈V (minu∈sDistance(u, v)), where Distance(u, v)

is some function determining the distance between two vertices. As a classical problem

there have been many results in understanding the k-centre problem.

In the general case the problem is known to not be in APX [47]. When the distance

satisfies the triangle inequality the problem becomes significantly easier, admitting a poly-

nomial time (relative to the size of the graph) approximation algorithm with a factor of 2

[41, 48]. Further, it is known no polynomial time approximation algorithm can achieve a

factor better than 2 unless P = NP [50, 85]. Additionally the k-centre problem is unlikely

to be fixed-parameter tractable (FPT) in a context of the most natural parameter k [29].
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1.1.3 Cyclic words

In this thesis we consider cyclic words to be equivalence classes of words under the cyclic

shift operation. For example, the words equivalent to aaab are aaba, abaa and baaa. In

general, we consider necklaces of length n over a given alphabet Σ. The most fundamental

result for necklaces are the equations for counting the number of necklaces due to folklore

[42]. These equations have been followed by algorithms to generate the set of all necklaces

of length n over Σ in lexicographic order in constant amortised time [90]. More recently,

the dual problems of ranking and unranking necklaces have been solved in polynomial time

relative to the length of the necklaces [92]. The ranking problem asks for the number of

cyclic words in some set N that are smaller than some given word w̄. The unranking

problem asks the the member of some set N that has a rank i.

We generalise several of these results to more complex settings. These include gener-

alising the ranking and unranking algorithms to the set of bracelets (equivalence classes

under the cyclic shift and reflection operations), fixed content necklaces (necklaces sharing

a fixed Parikh vector), and necklaces with forbidden subwords. We further generalise the

methods of counting, generating, ranking and unranking necklaces to the multidimensional

setting, where necklaces are defined over multidimensional words.

1.2 Crystal Structure Prediction

A crystal is a structure defined by an repeating period called a unit cell. For our purposes

the unit cell can be thought of as a three dimensional box containing ions, see Figures 1.1

and 1.2. Each ion belongs to a class called a species, determining the properties of the ion.

In this way, the unit cell is a periodic mapping from some set of ion species to the space

R3. In the discrete setting, the unit cell instead maps to some grid, generally the integer

grid Z3. In the most general formulations of csp the size and shape of the unit cell is left

open, however bounding the size is a common restriction for many cases of csp.

Crystal Structure Prediction can be thought of as the problem of finding the “best”

configuration of ions within a three-dimensional box. The quality of a configuration is

determined by the average pairwise interaction between each ion in the structure. The

pairwise interaction in turn is determined by an energy function, taking as input the dis-

tance between ions and a set of parameters based on the ion species. A positive interaction

between ions corresponds to a force pushing the ions apart, while a negative interaction
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Input

Specie 1

Specie 2

Specie 3

Crystal Unit Cell

Figure 1.1: A high level example of the crystal structure prediction process. Here the input
is a set of 3 species of ions (green, yellow, and blue), with each pair having some interaction
determined by some function based on the distance and species. This set of ion species
is transformed into a crystal structure (middle) defined by a repeating unit cell (right).
Note that there are 4 equivalent unit cells, determined by where we take the “snapshot”
defining the unit cell.

Figure 1.2: Example of a Sodium Chloride crystal (left) with the ionic structure (right).
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indicates a force of attraction. The goal of csp is to find a structure that corresponds to

a stable structure, indicated by having the minimal average pairwise interaction [67].

Crystal Structure Prediction has been a noted open problem in materials science for

over 30 years [70]. Despite this csp has remained open due to the complexity of solving

it optimally [16] and the combinatorial explosion following a brute-force approach. There

have been many different heuristic approaches to csp. An overview of several heuristic

approaches is given in Section 1.2.1. One defining problem with all of these methods is a

lack of any guarantees on optimality.

In addition to approaches to solve csp, the problem has also been claimed to be NP-

hard [77] without any formal proof of hardness. Two frequently cited results closely related

to the NP-hardness of energy minimisation are those of Barahona [9] and those of Wille

and Vennik and [102]. Barahona shows in [9] NP-hardness within the context of the Ising

model, an energy model based on placing ±1 charged vertices on a graph taking into

account only interactions between connected vertices. The reduction works on a grid,

where each vertex has degree at most 6, making the interaction very local. While this

is close to csp, the limitation to only very local interactions within the context of the

electrostatic charge reduces the relevance of this result to csp. Wille and Vennik show

in [102] that the problem of placing ions for some given positions is in NP. However, the

reduction goes only one way, and thus shows only containment in NP, and does not imply

the NP-hardness of the problem. While both of these results are closely related, neither of

them provides a satisfying answer to the csp problem.

Our work strengthens these claims by showing that not only are many abstractions of

csp NP-hard, but also that several cases are in fact undecidable. This is an important

result for two main reasons. Firstly, it strengthens the argument that csp is intractable.

Secondly, by analysing several verities of csp we develop a deeper understanding of where

the complexity of the problem originates, providing a basis for further work.

More precisely, we show that the natural formulation of the general csp problem for

discrete structures is undecidable. In this formulation, the only input is the species of ions

and the interaction function, leaving the size of the unit cell, and the precise composition

to be determined. This corresponds to the model used in some so-called tiling approaches

to csp [7, 22, 23]. We further show that when the size of the unit cell is constrained the

problem remains NP-hard to approximate within any factor greater then 0. Additionally,

we show that the related problem of determining the best set of ions to remove from

a unit cell is NP-hard both to solve and approximate. Finally, we show that for the
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one dimensional problem, as used for example by MC-EMMA [23], may be solved by a

parameterised algorithm.

1.2.1 Heuristic Methods of Crystal Structure Prediction

There have been many heuristic approaches to csp. In this section we give an overview of

several common approaches that are used in csp. Before explaining the processes them-

selves, it is important to understand the notation of relaxation with regards to csp. Infor-

mally, the relaxation process can be thought of as process of working out where the ions in

a given unit cell would “settle”. This corresponds to the process of letting the ions move

from the starting positions according to the interaction model. In general, relaxation is

computed by iteratively shifting each ion according to the energy model until the structure

stabilises. While relaxation tools form a very powerful technique, they are computationally

costly and often fall into local minimums, making them a tool best used sparingly.

Quasi-random sampling. One of the first approaches to csp was what amounts to

random sampling followed by the relaxation process. The main benefit of this approach is

that the initial random sampling can be done very efficiently, moving the complexity to the

relaxation process. Some examples of this style of approach are given by Freeman et al. [33],

Pickard and Needs [81, 82], and Schmidt and Englert [95]. It should be noted that many of

the more sophisticated approaches use random sampling to some degree. This widespread

utilisation has motivated our k-centre based approach as a means of constructing a set of

samples with some guarantee on the difference between samples.

Basin Hoping. A more sophisticated approach is that of basin hoping. This approach

can be thought of as an extension of the relaxation process, with the goal of moving past

the minimum energy’s reached during the relaxation process. While this approach allows

a more complete exploration of the state space, it only works when there is a large global

minimum with relatively low barriers. Some examples of this kind of approach are shown

in the work of Dyer et al. [27], Goedecker [39], and by Wales and Doye [100]. One related

approach to the Basin hoping method is that of Antypov et al. [7], who looked at csp

through a combinatorial lens. They provide a local search algorithm for moving between

basins by way of swapping ions within the structure.

Tiling. One more novel approach to csp is the so-called tiling approach. These approaches

use precomputed blocks as a building block in place of working on an ion by ion approach.

Some notable examples of this is the work done by Collins et al. [22, 23] and by Mellot et
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al. [73]. Note that these methods often act as a novel addition to the sampling or basin

hoping approaches, using the tiles in the same way as the ions are used in those methods.

Computer Science based heuristics. Finally, there have been a variety of attempts to

solve csp through application of traditional computer science heuristic algorithms. Some

notable examples of this are simulated annealing [79, 96], swarm optimisation [15, 101],

and genetic algorithms [26, 66, 76]. While these have all worked to varying degrees, they

lack any guarantees on optimality.

This thesis looks at csp in three directions. First, in terms of understanding the

complexity of the problem we look at the tiling models, both for blocks corresponding to

a single ion and more general structures. Secondly, we look at an improved method for

sampling potential structures. Finally we look at ways of uniquely representing crystals

within a discrete space. We focus on the sampling problem as it is both a method of csp

and for its use in conjunction with other techniques.

1.3 The k-Centre Problem

The k-centre problem forms the basis for our sampling approach to csp. We use the

representation of crystals as described in Section 1.4 as a basis. This section provides some

background on the k-centre problem. The k-centre problem is a classical graph problem.

The objective in k-center problem is to find a set of k vertices for which the largest distance

of any vertex of the graph and its closest vertex in this k-set is minimised. The numerous

applications of the problem in various areas of computer science have lead to different

definitions of connectivity and distance between the vertices depending on the setting at

hand.

The k-center problem is a classical NP-hard problem, as such a great deal of research

has been direct to trying to solve it. In the general case the problem is known to not

be in APX [47]. When the distance satisfies the triangle inequality the problem becomes

significantly easier, admitting a polynomial time (relative to the size of the graph) ap-

proximation algorithm with a factor of 2 [41, 48]. Further, it is known no polynomial

time approximation algorithm can achieve a factor better than 2 unless P = NP [50, 85].

Additionally the k-centre problem is unlikely to be fixed-parameter tractable (FPT) in a

context of the most natural parameter k [29].

A different form of the k-center problem appears in stringology and it was linked with

important applications in computational biology; for example to find the approximate
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gene clusters for a set of words over the DNA alphabet [65]. This problem is also NP-

hard [30, 63]. Despite the hardness of the problem, there are fixed-parameter algorithms

[43, 68] allowing some guarantee of optimality for solving the problem. The Closest String

problem aims to find a new string within a distance d to each input of n strings and such

that d is minimised. The natural generalisation of k-Closest String problem is of finding

k-center strings of a given length minimising the distance from every string to closest center

[37, 55]. This problem has been mainly studied for the popular Hamming distance. The

major application of this distance is in the coding theory, but it also has been intensively

used in biological applications aiming to discover a region of similarity or to design both

probes and primers [62].

In this thesis we present and study a new variant of the k-center problem on the class of

combinatorial necklaces. Necklaces are fundamental combinatorial structures [42], which

are defined as a set of n-symbol strings over an alphabet of size k, that are equivalent

under the cyclic shift operation. Necklaces are discussed in more details in Section 1.4.

In order to construct a graph from the set of necklaces for the k-centre problem, it is

necessary to determine a similarity metric for necklaces. For the purpose of choosing a

distinct set of crystals, we use subwords as a notion of similarity. The idea behind this

approach is that local interactions between ions have much higher energy than long range

interactions, and therefore are much more impactful on the overall structure of a crystal.

Therefore, by choosing a set of necklaces with a diverse set of subwords, the corresponding

unit cells should provide a good sample from which to find the optimal solution. To this

end, we turn to the the overlap coefficient [21, 84, 86]. Informally, the overlap coefficient is

a measure of the number of common subwords between necklaces, normalised by the total

number of subwords in each necklace.

The graph in this setting corresponds to the set of all necklaces of some given length

n over an alphabet Σ of size q. This setting has some unique properties. While the graph

can be completely represented, it is of exponential size relative to the description in terms

of n and q. Despite this, the graph has a highly symmetric structures due to the nature

of necklaces. We show that verifying a solution to the k-centre problem for necklaces can

not be done in polynomial time relative to n and q unless P = NP , indicating that the

k-centre problem itself is likely to be at least NP-hard.

The idiosyncrasies of this setting motivates study for new algorithms to solve the prob-

lem in polynomial time relative to length of the necklaces and size of the alphabet. This

corresponds to a logarithmic time algorithm relative to the size of the graph. We provide
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approximation algorithms running in such time for the various restrictions and generalisa-

tions of necklaces as described in Section 1.4.

1.4 Cyclic Words

The third theme of this thesis is that of the combinatorial representation of crystals in a

discrete space. One natural formulation of such a structure would may be to use a word

of dimensions corresponding to those of the unit cell. In this formulation, an alphabet Σ

is constructed with a symbol corresponding to each ion species, along with an additional

symbol to represent empty space. While this formulation allows many aspects of the crystal

to be represented, it does not account for the symmetry inherent to crystal structures.

The main class of symmetry we consider is that of translational symmetry. Informally,

translational symmetry can be thought of as the equivalence of two crystal under trans-

lation in space. This intuitively make sense in the context of real structures, where two

different “snapshots” of a unit cell both represent the same global structure. Figure 1.3

provides an example of this equivalence. In order to represent crystals in this manner we

turn to necklaces - an equivalence class of cyclic words - as a natural means to capture a

periodic discrete structure. At a high level, the idea is to construct an alphabet Σ con-

taining a symbol representing each ion in the crystal along with an additional symbol to

represent empty space.

In the one dimensional case, each symbol represents a “layer”, a precomputed 3D struc-

ture. These layers can be encoded as symbols from a finite alphabet and the discrete rep-

resentations of materials (periodic crystals) can be seen as combinatorial necklaces (cyclic

words) due to their invariance under the cyclic shift operation, e.g. see SrT iO3 repre-

sentation as two layers in Figure 1.4 (right). Alternatively, crystals can be represented

by 2D slices as two dimensional necklaces or even on purely atomic scale by three dimen-

sional necklaces over a finite alphabet of ions from a periodic table of elements, see three

dimensional necklace representation of SrT iO3 on Figure 1.4 (middle). To account for

symmetry, we represent one dimensional crystal structures as either combinatorial neck-

laces or bracelets. Informally a necklace is a cyclic word of length n [42], while bracelets

are necklaces under the reflection operation.

Both necklaces and bracelets are heavily studied objects. The most fundamental result

is that of counting the number of necklaces. Graham et al. provide equations for counting

both the number of necklaces and aperiodic necklaces, known as Lyndon words [42]. The
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d1

d2

(1, 0)

(0, 1)

(1,0)

(0,1)

(1, 1)

Figure 1.3: An illustration of translational symmetry for a 2× 2 word. Note that all four
words can be reached from one another through cyclic shifts, denote (g1, g2).
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same result for both bracelets and aperiodic bracelets, known as Lyndon bracelets was

given by Gilbert and Riordan [38].

Building on the results of counting the number of necklaces, Lyndon words, bracelets

and Lyndon bracelets has been a set of algorithms to generate each set for a given length

and alphabet in lexicographic order. The first algorithms for generating necklaces were

provided by Fredricksen and Kessler [32], and Fredricksen and Maiorana [31], which were

later proven to run in constant amortised time (CAT) by Ruskey et al. [88]. Cattell et al.

provided a further CAT algorithm for the generation of necklaces and Lyndon words [17].

Sawada provided a similar CAT algorithm for bracelets and Lyndon bracelets [93].

One set of results that has been of particular interest to us is the work on ranking and

unranking. Informally, the ranking problem, also known as the indexing problem, asks for

the number of member of some given ordered set smaller than some element. Unranking

is the reverse process, asking for the element of some ordered set with a given rank.

Ranking has been studied for various objects including partitions [103], permutations [72,

74], combinations [97], etc. Unranking has similarly been studied for objects such as

permutations [74] and trees [44, 78]. The first class of cyclic words to be ranked were

Lyndon words by Kociumaka et al. [60] who provided an O(n3) time algorithm, where

n is the length of the word. An algorithm for ranking necklaces was given by Kopparty

et al. [61], without tight bounds on the complexity. A O(n2) time algorithm for ranking

necklaces was provided by Sawada et al. [92]. More recently, we have provided an O(q2 ·n4)

time algorithm for ranking bracelets [4].

Beyond classical necklaces and bracelets, we consider the center problem on several

generalisation of classical necklaces. The first of these is the idea of multidimensional

necklaces which generalises classical necklaces and two dimensional necklaces. While a

relatively new object, there have been some preliminary results in the two dimensional

case motivated by coding theory [6, 71].

Further, motivated by the problem of determining sets of layers corresponding to a

given chemical formula, we consider weighted necklaces. In the context of csp a necklace

is weighted by the chemical composition, represented by a vector. The weight of a symbol

in this case corresponds to a vector representing the chemical composition of the corre-

sponding layer. In this setting, the goal can be thought of as choosing a necklace with the

Parikh vector corresponding to a positive integer solution to a set of linear Diophantine

equations.

These can be seen as a generalisation on fixed-content necklaces. A set necklaces has
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fixed content if every necklace in the set has the same Parikh vector. As with general

necklaces, there have been results for counting [38], and generating [57, 89] both fixed

content necklaces and bracelets. Further, Hartman and Sawada provided a polynomial time

algorithm to rank and unrank fixed density necklaces, fixed content necklaces restricted to

a binary alphabet [45].

An additional constraint on necklaces is that of forbidden subwords. Informally, the

set of necklaces with forbidden subwords is the set of necklaces such that no necklace

contains any word from some given set as a subword. While this class has not been studied

as intensely as the general or fixed content case, there are still some results of interest.

Ruskey and Sawada [90] provide methods for counting and generating necklaces with a

single forbidden subword.

Figure 1.4: The crystal of SrT iO3 (left) and its 3D (middle) and 1D (right) necklace
representations.

These classes of cyclic words are utilised in the sampling algorithms we outline in

Chapter 5, Section 1.3 provides the outline to this sampling problem looking by looking at

the k-centre problem. At a high level, the goal is to use the k-centre problem as a means

to generate samples via a weighted graph where each vertex corresponds to some member

of the set.

One further class that is of interest to this thesis is that of de Bruijn sequences. Infor-

mally a de Bruijn sequence is a cyclic word defined over some alphabet Σ of length q such

that every word of length n over Σ appears exactly once. The question of the existence of

such sequences was solved twice, first by Sainte-Marie [24, 91] and more famously by de

Bruijn [25]. Several key results for both generating [31] and ranking [60] necklaces have

been motivated by solving these problems for de Bruijn Sequences.



14 Duncan Adamson

1.5 Overview of Results

This thesis is broadly split into three themes regarding the results. First and foremost

are results on the computational difficulty of Crystal Structure prediction. Chapters 3

and 4 provide results on the undecidability in the general case and NP-hardness in several

specific cases of csp respectively. Chapter 5 responds to this difficulty by providing a new

technique for sampling possible crystal structures inspired by the k-centre problem. Finally,

Chapters 6, 7 and 8 provide new combinatorial tools for describing crystal structures. The

tools provided in Chapters 6, 7 and 8 may be used in conjunction with the sampling

methods given in Chapter 5 to better sample the set of crystal structures.

1.5.1 Hardness of CSP

The first two chapters are dedicated to the showing the difficulty of solving abstract forms

of csp. Chapter 3 provides a proof of undecidablity for the most general formulation of csp

in Theorem 1. This undecidability result is derived by reduction from the tiling problem.

The tiling problem is a classic undecidable problem that asks if a given set of Wang tiles

can completely tile the plane [11]. More relevant to us is the periodic tiling problem. In

the periodic tiling problem, the goal becomes to find a periodic tiling, i.e. a fixed rectangle

made of tiles that can be repeated infinitely to tile the plane properly. This problem is

a natural fit for csp as it looks at very local interactions being used to build an infinite,

periodic, structure.

Theorem 1 show that the undecidability results hold for several chemically motivated

interaction functions. Notably, we look at the Buckingham-Coulomb potential [14] and a

generalisation of the Ising model [54, 98]. Both of these functions have been heavily utilised

by csp techniques, making any hardness results based on these interaction functions of

great interest.

Corollary 3 strengthens Theorem 1 by showing that the problem remains undecidable

when restricted to the chemically motivated Buckingham-Coulomb potential. This is of

particular note as it is the model used by several “tiling” approaches such as those by

Collins et al. [22]. This setting has the added complexity of balancing the charge of the

unit cell, adding an integer charge to every ion species with the requirement that the sum

of these charges is 0.

The first half of Chapter 4 provides hardness results in the setting where the size of unit

cell is constrained. This corresponds more directly to many heuristic techniques for csp,
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where the size of the unit cell is fixed due to computational constraints. Theorem 2 shows

that in the one dimensional setting our main form of csp is hard to approximate within any

factor greater than 0. Theorem 3 compliments Theorem 2 by providing a parameterised

algorithm for the one dimensional setting. This matches the one dimensional tiling model

of Collins et al. [23].

The second half of Chapter 4 looks at a variation on csp, where a unit cell is given as

input with the goal of removing some subset of ions so as to minimise the average energy

of the remaining ions. This is similar to the methods proposed by Antypov et al. [7] and

Dyer et al. [27]. While those methods relied on swapping ions, this approach is based on

the process of removing ions. Theorems 4 and 6 show that this model is both NP-hard to

solve and to approximate within any factor n1−ε where ε > 0.

Theorem 8 strengthens Theorem 4 by showing that the problem remains NP-hard

to solve even when the number of elements in the unit cell is restricted to 2 for the

Buckingham-Coulomb potential. This is particularly important as 2 is the smallest feasible

number of elements to construct a crystal with charged ions. As such, it can be seen as a

particularly relevant result for understanding the complexity of csp.

Finally Theorem 9 shows that the problem remains hard when restricted to the elec-

trostatic potential. This is the simplest model of interaction between charged ions, based

solely on the charges and distances between ions. This result helps to solidify the hardness

of csp even for highly simplified interactions.

1.5.2 The k-Centre Problem for classes of Cyclic Words

The second problem this thesis considers is the problem of sampling different crystal struc-

tures. Chapter 5 provides the underlying algorithms for the k-centre problem. Theorem

10 shows that the problem of verifying a solution to the sampling problem is NP-hard.

While this does not necessarily show that the it is NP-hard to solve the problem, it does

give a strong indication of complexity.

Theorem 12 provides our primary approximation algorithm for solving the k-centre

problem. The exact approximation ratio varies as a function of the number of samples

and size of necklaces, however it is in the worst case logarithmic relative to these product

of the number of samples and size of the necklaces. Further, this algorithm runs in linear

time relative to the size of the output. Theorem 12 relies on the generation of de Bruijn

sequences. As such it can not be easily extended to the multidimensional case, nor to
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settings where the Parikh vectors is constrained.

In order to provide approximation algorithms for these settings, Theorem 13 provides

a further more general approximation algorithm. While Theorem 13 provides a slightly

worse approximation ratio, being only logarithmic in the number of samples, the ability to

utilise this algorithm in more settings makes it of independent interest. In order to utilise

Theorem 13, it is necessary to develop a deeper understanding of various classes of cyclic

words, particularly in regards to ranking.

1.5.3 Cyclic Words

The final theme of this thesis is results on cyclic words. The main goal of this theme is

to provide tools to rank various classes of cyclic words, however we also provide several

tangential results that are of independent interest.

Chapter 6 provides a set of combinatorial results regarding bracelets. More precisely we

look the problem of ranking bracelets, the problem of determining the number of bracelets

smaller than some given bracelet. Theorem 14 shows that the rank of a bracelet can be

computed in O(q2 · n4) time where n is the length of the bracelet and q the size of the

alphabet. This not only of interest in the problem of sampling, but also provides new

combinatorial insight into the class of bracelets.

Theorem 14 is proven through ranking two related classes of cyclic words, namely

palindromic and enclosing bracelets. A palindromic bracelet is a bracelet corresponding

to a necklace class such that the reflection of every word in the necklace class belongs

to the same necklace class. An enclosing bracelet is defined relative to a word w̄ as an

apalindromic bracelet corresponding to a pair of necklaces one of which is smaller than w̄

and the other greater than w̄. Theorems 16 and 17 provide algorithms to rank palindromic

and enclosing bracelets respectively. While neither of these classes are of particular interest

from the perspective of csp, they are of independent interest as novel classes of cyclic words.

Chapter 7 provides the tools to rank necklaces under three broad sets of constraints;

Parikh vectors satisfying linear Diophantine equations, necklaces with Parikh vectors sat-

isfying linear Diophantine equations, and necklaces with forbidden subwords. Section 7.1

looks at the problems related to determining the number of positive integer solutions to

Diophantine equations with the constraint the sum of the variables sums to some given

value n. Lemma 29 shows how to count the number of such solutions. Theorem 19 looks at

the problem of ranking these solutions. Theorem 20 solves the problem of unranking these
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solutions. Lemma 29, and Theorems 19, and 20 run in polynomial time for a fixed number

of equations. These algorithms are not only of interest regarding the sampling approach

to csp, but also as a means to solve linear Diophantine equations. One such motivation

would be in the context of tiling approaches to csp, where the number of combinations of

tiles corresponding to a given chemical formula can be computed.

Section 7.2 extends the results from Section 7.1 to the set of necklaces with Parikh

vectors corresponding to solutions to linear Diophantine equations. These results are of

particular interest in the context of sampling starting stuctures for the tiling approach.

Theorem 21 shows how to count the number of such necklaces. Theorem 22 provides an

algorithm to rank these necklaces. Finally Theorem 23 provides an algorithm for unranking.

As was the case in Section 7.1, these algorithms run in polynomial time for a fixed number

of linear equations.

Section 7.3 looks at necklaces that do not contain any forbidden subword from some

given set. Theorem 24 provides an algorithm to rank necklaces with a set of forbidden

subwords. Theorem 25 compliments Theorem 24 with an algorithm to unrank necklaces

with a set of forbidden subwords. In both cases, the algorithms run in polynomial time

relative to the length of the necklaces, and size of the set of forbidden words.

Finally, Chapter 8 provides a suite of new algorithms and results for multidimensional

necklaces. We look at both the general case and fixed content necklaces. In both cases we

provide an expression to count the number of necklaces of a given set of dimensions and

alphabet that may be evaluated in polynomial time relative to the size of the necklaces.

We follow this with an algorithm for ranking multidimensional necklaces, stated in

Theorem 26. The algorithm operates in a recursive manner, taking advantage of each

d-dimensional necklace of being composed of a set of d − 1 dimensional necklaces. This

algorithm runs in polynomial time relative to the size of the necklaces. Theorem 26 is

further strengthened by Theorem 27 showing how to rank fixed content multidimensional

necklaces, multidimensional necklaces where the Parikh vector is fixed. This algorithm uses

the same techniques as in Theorem 26 for the unconstrained case, running in polynomial

time for a fixed size alphabet.

Theorem 28 shows how to generate the set of multidimensional necklaces in linear time

per necklace relative to the size of the necklaces. Notably, this corresponds to the lower

bound required to output every necklace in order. Theorem 29 compliments both Theorems

26 and 28 by showing how to unrank multidimensional necklaces in polynomial time. Both

Theorems 28 and 29 require the technical Lemma 54, showing that given any word w̄, the
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necklace following w̄ can be computed in polynomial time.

1.6 Publications and Presentations from this Thesis

This section provides an overview on the papers and external presentations regarding the

results from this thesis. We first discus the results that have been presented externally.

The results presented in Section 4.2 regarding the hardness of csp by ion removal

have been published at the 46th International Conference on Current Trends in Theory

and Practice of Computer Science (SOFSEM) [2]. Further, they have been presented at

the British Colloquium for Theoretical Computer Science (BCTCS) 2019 hosted at the

University of Durham [56]. Finally, these results are under review in journal format for

Fundamenta Informaticae. The results in Chapter 5 and 8 are currently under review, and

presently available as a paper at Arxiv [3]. Additionally, the results in Chapter 8 were

presented at the British Colloquium for Theoretical Computer Science (BCTCS) 2020

hosted at the University of Swansea [12]. The results in Chapter 6 have been published

at the 31st Annual Symposium on Combinatorial Pattern Matching [4]. These results

were additionally presented at the British Colloquium for Theoretical Computer Science

(BCTCS) 2021 hosted at the University of Liverpool [99]. Further, these results have been

submitted for review in journal format to Algorithmica.

In addition to the above mentioned results, two further manuscripts are under prepa-

ration following the work done in this thesis. The first of these is on the hardness of csp in

the general setting, containing the results from Chapter 3 and Section 4.1. This manuscript

serves to strengthen the results presented in [2] by showing that a more general model of

csp is not only NP-hard but is in fact undecidable in the most general case. Additionally,

the results presented in Chapter 7 are under preparation as a manuscript. This manuscript

strengthens the results from [3] by extending our approximation algorithms for the k-centre

problem into new settings.



Chapter 2

Preliminaries

This chapter introduces the main definitions and notation that is used in the remainder of

this thesis. This is primarily spilt into two Sections. Section 2.1 covers the definitions and

notation for Crystal Structure Prediction. Section 2.2 covers definitions regarding cyclic

words which are used as the foundation for the representation of discrete crystals.

2.1 Energy Minimisation for Combinatorial Crystal Struc-

ture Prediction

This work considers two models of energy minimisation based on the idea of either gener-

ating an optimal structure from scratch, or taking an existing structure and removing ions

to improve it. While both models have some slight differences, there are many similarities

between both in terms of the models and what is determined to be a “good” or “bad” so-

lution. The remainder of this section is laid out as follows. Section 2.1.1 covers the general

model for both cases, providing the underlying definitions that are used for the remainder

of this work. Section 2.1.2 looks at the main functions used to determine the value of a

given structure. Section 2.1.3 provides the basis for this work regarding the more general

problem of determining the optimal structure from scratch. Finally Section 2.1.4 provides

the basis for the deletion operation based model of Crystal Structure Prediction.
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2.1.1 The General Model

This section provides the definitions that are used as a basis for both the colouring based

model presented in Section 2.1.3 and the deletion based model presented in Section 2.1.4.

In both cases, the goal of our abstractions of csp is to determine a way of periodically

colouring an infinite discrete space using a set of colours based on the input set of ions and

the empty space. In this way, the problem can be thought of as determining the period

of a colouring of the vertices on the integer grid Zd for some number of dimensions d.

For notation each vertex v ∈ Zd may be referred to by the vector corresponding to the

position of v on the integer grid. The period of a colouring is called the unit cell, which

may equivalently be thought of as a mapping from the set of colours to the grid.

Definition 1. A unit cell U of dimensions n = (n1, n2, . . . , nd) is a mapping from some set

of colours C to the integer grid Zd. A unit cell can be thought of as a fully coloured finite grid

{(x1, x2, . . . , xd) : xi ∈ [0, ni−1]} such that every vertex in {(x1, x2, . . . , xd) : xi ∈ [0, ni−1]}
is assigned a colour from C. Given a unit cell U , and vector y ∈ {(x1, x2, . . . , xd) : xi ∈
[0, ni − 1]}, U(y) returns the colour at position y of the grid. A unit cell U of dimensions

n ∈ Zd can be mapped to Zd by colouring vertex x ∈ Zd with U((x1 mod n1, x2 mod

n2, . . . , xd mod nd)).

For notation the number of vertices in a unit cell U of dimensions n is denoted by |U |,
i.e. |U | = n1 · n2 · . . . · nd. Similarly x ∈ U is used to denote that x is a position in

the finite grid defining U . Where it is clear from context given any vector x ∈ Zd the

colour of the vertex at position x in the grid Zd coloured by U is denoted U(x), giving

U(x) = U((x1 mod n1, x2 mod n2, . . . , xd mod nd)).

One additional constraint that is sometimes applied in the context of crystal structure

prediction is that of charge neutrality. In this setting, every colour is associated with an

integer charge. In general, the charge for any colour not representing empty space is a

non-zero. Given a unit cell U , the charge of x ∈ U is denoted Q(U(x)). Note that the

charge of any two points assigned the same colour are equal, i.e. if U(x) = U(y) then

Q(U(x)) = Q(U(y)) for any pair of vectors x,y ∈ U . Informally, a unit cell is charge

neutral is the sum of the charge of every position in the unit cell is 0.

Definition 2. A unit cell U is charge neutral if and only if
∑
x∈U

Q(U(x)) = 0.

The goal of these colourings is to minimise the average pairwise energy per vertex of the

coloured grid. Conceptually, the energy between two vertices can be thought of as the force
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between them, with a negative energy attracting the two vertices and a positive energy

repelling them. As such, the goal can be thought of as maximising the negative energy per

vertex, in an attempt to build a stronger structure. The pairwise energy between a pair of

vertices in the grid is determined by a pairwise energy function.

This work considers parametric pairwise energy functions of the form f(θ(c1, c2), t)

where c1, c2 ∈ C are a pair of colours, r ∈ R is a euclidean distance and θ(c1, c2) ∈ Rp is

a set of p parameters determined by the colours c1 and c2. Further, this work assumes

that the set of parameters θ(c1, c2) are predefined for every c1, c2 ∈ C. Each such function

returns a scalar real value, i.e. f :
(
r ∈ R, θ(c1, c2) ∈ Rp

)
7→ R. As the parameters are

predefined, the function f(θ(c1, c2), r) may be rewritten as f(c1, c2, r) when it is clear from

context. Importantly, this work assumes that the energy for any two pairs of points at the

same distance and sharing the same colours is the same. Formally, given two pairs of vectors

x1,x2 ∈ Zd and y1,y2 ∈ Zd, if U(x1) = U(y1), U(x2) = U(y2) and D(x1,x2) = D(y1,y2)

then f(θ(U(x1), U(x2)), D(x1,x2)) = f(θ(U(y1), U(y2)), D(y1,y2)). For a given unit cell

U and pairwise energy function f , the average pairwise energy per vertex is defined as

follows:

Definition 3. Given a unit cell U of dimensions n colouring the grid Zd, the average

pairwise energy per vertex is given by
∑
x∈U

∑
y∈Zd

f(θ(U(x),U(y)),D(x,y))
|U | where f(θ(c1, c2), d) is

the pairwise energy function, D(x,y) denotes the euclidean distance between x and y, and

θ(c1, c2) ∈ Rp is a set of p parameters.

Alongside these definitions, some additional notation is used to simplify further discussion

relating to the 2D integer grid. Given two vertices vi at position at (x1, y1) and vj at

position (x2, y2), vi is said to be directly adjacent to vj if either x1 = x2 ± 1 and y1 = y2

or x1 = x2 and y1 = y2 ± 1. Similarly vi is diagonally adjacent to vj if x1 = x2 ± 1 and

y1 = y2 ± 1, and vi is peripherally adjacent if either x1 = x2 ± 2 and y1 = y2 or x1 = x2

and y1 = y2 ± 2. An overview is provided in Figure 2.1.

2.1.2 Pairwise Energy Functions

Following the discussion the previous section, this section covers the pairwise energy func-

tions that are used in this thesis. This work focuses primarily on two classes of energy

functions, the n-distance common minimal value class and the controllable class. Addi-

tionally two energy functions based on popular models used in chemistry are studied, the
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Figure 2.1: An overview of the adjacency’s relative to the central (red) tile. The tiles in
green are directly adjacent, the tiles in blue are diagonally adjacent and the tiles in yellow
are peripherally adjacent.

Buckingham-Coulomb potential and the Ising model.

The n-Distance Common Minimal Value Class The first class considered in this

section is the n-distance common minimal value class denoted CMV(n). This class of

functions focuses on the interactions between vertices within a distance of r of each other,

for some distance r ∈ R. In order to simplify reasoning on the set CMV(r), it is assumed

that given any distance d > r the value of f(θ, d) = 0 for any set of values θ ∈ Rp. In

this way, the set CMV(r) can be thought of as determining the interaction between every

vertex within a circle of radius r of some central vertex. For notation, let D(r) = {(i, j) ∈
Z2|
√
i2 + j2 ≤ r, (i, j) 6= (0, 0)} be the set of vertices on the integer grid Z2 within a

distance of at most r of the central point (0, 0). Further let d(r) = {
√
i2 + j2|(i, j) ∈ D(r)}

be the set of possible distances between the central vertex and any vertex in D(r). As an

example, D(2) = {(2, 0), (1, 1), (1, 0), (1,−1), (0, 2), (0, 1), (0,−1), (0,−2), (−1, 1), (−1, 0),

(−1,−1), (−2, 0)} and d(r) = {1,
√

2, 2}. The goal of this class is to be able to “fix” the

optimal distance between any two colours as either being some distance in d(r), or as

being outside of the D(r) - in effect penalising two colours at a distance of r or less. To

this end this work uses the idea of a common minimal value. Informally, the common

minimal value can be thought of as some negative value M such that the smallest possible

interaction between any pair of vertices is M . Further, the functions in this work restrict

M to appear at most once in the set of possible distance between each colour, meaning that
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given some pair of colours c1 and c2, there exists at most one distance d ∈ d(r) such that

f(θ(c1, c2), d) = M . The following definition formalises the r-distance common minimal

value class.

Definition 4. A parametric pairwise energy functions f(θ, d) : (θ ∈ Rp, d ∈ R) 7→ R
belongs to CMV(r) if there exists M ∈ Q such that the following conditions are met:

1. For any set of parameters θ ∈ Rp and distance d > r, the value of f(θ, d) = 0.

2. There exists some set of parameters θ ∈ Rp such that for every distance d ∈ d(r) the

energy f(θ, d) > M .

3. For every distance d ∈ d(r), there exists some set of parameters θd ∈ Rp such that

f(θd, d) = M , and for every other distance distance d′ ∈ d(r) where d′ 6= d the value

of the energy function f(θd, d
′) > M .

These conditions are used to help encode tiling problems into the pairwise energy min-

imisation problem over C on Zd. Condition 1 ensures that there is no interaction between

vertices over a certain cut off distance, allowing these interactions to be safely ignored.

Condition 2 ensures that there exists a set of parameters such that the corresponding

colours must be placed further than r apart, or suffer a small energy penalty by having

an interaction greater than M . Finally Condition 3 ensures that there exists a set of

parameters such that the interaction of the corresponding colours is minimised at M at

exactly one distance. The goal of these conditions is to be able to force a structure on the

colouring based on the relative distances between colours. This allows the structure of the

tiling problem to be utilised in the setting of the pairwise energy minimisation problem

over C on Zd. In addition to these conditions, we assume that every function in CMV(r)

can be computed in polynomial time. To show that these conditions have some grounding

in the physical sciences, Sections 2.1.2.1 and 2.1.2.2 show that two models of interaction

based interaction functions used in chemistry satisfy the CMV(2) condition.

The Controllable Class The second class introduced in this section is the controllable

class, denoted CF . This work assumes that any function in CF can be computed in

polynomial time for any input. Intuitively, for every f ∈ CF there exists a set of parameters

that counteract the effect of the distance parameter r.
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Definition 5. A function f : Rp 7→ R belongs to CF if and only if for any given a ∈ R
and any fixed r ∈ R+ there exists a set of parameters θ(c1, c2) ∈ Rp−1 for every pair of

colours c1, c2 ∈ C such that f(θ(c1, c2), r} = a.

2.1.2.1 The Buckingham-Coulomb Interaction Function

As this work is motivated by the problem of determining the complexity of crystal structure

prediction (csp), it is important to show that chemical energy functions belong to both

CMV(n) and CF . Before looking at the these energy functions, it is useful to look at the

csp problem in terms of the pairwise energy minimisation problem over C on Zd. Using

the same terminology as before, csp takes a set of “colours”, corresponding to a set of ion

species plus a colour to represent empty space. Each of these colours is given an integer

charge. The charge of the unit cell is the sum of the charge of each vertex. The goal is to

determine the charge neutral unit cell with minimum energy per vertex.

One of the most popular pairwise energy functions is the Buckingham-Coulomb poten-

tial, denoted BC(i, j, ri,j) for a pair of ions i and j at a distance of ri,j . Let S(i) return the

species of ion i. The Buckingham-Coulomb potential is the sum of two functions; the close

range Buckingham potential, and the long range Coulomb potential both determined by

the species of the ions. The Buckingham potential, UB(i, j), for a pair of ions i, j is defined

by four parameters: the distance between the ions, ri,j , and the three parameters, known

as the force field parameters, AS(i),S(j), BS(i),S(j), CS(i),S(j) ∈ R defined by the species of

the ions. Note that all three parameters have positive values. The energy is calculated as:

B(S(i), S(j)) =
AS(i),S(j)

eBS(i),S(j)·ri,j
−
CS(i),S(j)

r6
i,j

The Coulomb potential for a pair of ions i, j is defined as:

C(i, j, ri,j) =
qS(i)qS(j)

rij

Where rij is the Euclidean distance between the ions and qS(i) is the charge of ion species

S(i). The Buckingham-Coulomb potential is:

UBC(i, j) = UB(i, j) + UC(i, j) =
AS(i),S(j)

eBS(i),S(j)·rij
−
CS(i),S(j)

r6
ij

+
qS(i)qS(j)

rij
.

To avoid computing the sum of the infinite series, a cut-off distance di,j is introduced. The
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energy between any two ions at a distance greater than di,j is set to 0 for simplicity. Note

that as with the other parameters, di,j is determined by the species of ions i and j. With

a cut-off distance di,j , the Buckingham-Coulomb potential is defined as:

BC(i, j, ri,j) =

0 r > di,j
Ai,j

eri,jBi,j
− Ci,j

r6
+

qi·qj
ri,j

r ≤ di,j

The next problem is to show thatBC(i, j, ri,j belongs to CMV(n). In order to fitBC(i, j, ri,j)

in to CMV(n), the equation is slightly modified by multiplying the distance by a factor of

10, giving:

BC(i, j, ri,j) =

0 r > di,j
Ai,j

e10·ri,jBi,j
− Ci,j

(10·r)6 +
qi·qj

10·ri,j r ≤ d

Note that this equation corresponds to BC(i, j, ri,j) used on the grid G = {(10 · x1, 10 ·
x2, . . . , 10 · xd)|x1, x2, . . . , xd ∈ Z}.

Proposition 1. The Buckingham-Coulomb potential belongs to the 2-distance common

minimal value class CMV(2).

Proof. In order to show that The Buckingham-Coulomb potential belongs to the class

CMV(2), it is necessary to show that there exists a set of parameters for each distance

d ∈ [10,
√

200, 20] such that (1) BC(i, j, d) = M , (2) BC(i, j, d′) > M for every d′ ∈
[10,
√

200, 20] where d′ 6= d and (3) there exists a set of parameters such that BC(i, j, d′) >

M for every d′ ∈ [10,
√

200, 20]. Here M = −1 and the cutoff distance is set to 2. This

leaves 4 cases to consider.

Case 1, d = 1: In this case the energy between i and j at a distance of 1 is set to −1.

Let qi · qj = −1. The equation
Aij

eBij10
− C

106
− 1

10 must equal −1, which may be achieved by

setting A = eBij
(
C

106
− 9

10

)
. For any distance greater than 1, the energy must be greater

than −1. Let P be the penalty energy for having j at a distance of
√

200. For simplicity

let Bij = 0. In this case at a distance of
√

2 the energy equals C
106
− 9

10 −
C

2003
− 1√

200
= P

which can be rearranged to give C =
P+ 9

10
+ 1√

200
1

106
− 1

2003
. Note that under this setting, the energy

at a distance of 2 is strictly greater than P as both negative terms are decreased while the

positive term remains constant.

Case 2, d =
√

2: In this case the energy between i and j at a distance of
√

2 is −1,

and greater than −1 at any other distance. Let qi · qj = 1. At a distance of
√

2, the
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equation
Aij

eBij ·
√
200
− Cij√

200
6 + 1√

200
= −1 must be satisfied. This can be done by set-

ting Cij =
√

200
6
(

Aij

eBij ·
√
200
− 1
)

. This gives the equation at a distance of 1 as
Aij

eBij ·10
−

√
200

6

106

(
Aij

eBij ·
√

200
− 1
)

+ 1
10 > −1, which can be rearranged to give Aij >

69
10( 1

eBij ·10
− 8

e
Bij ·
√
200

.

Simultaneously, at a distance of 2 the equation
Aij

eBij ·20
−
√

200
6

206

(
Aij

eBij ·
√
200
− 1
)

+ 1
20 > −1,

requiring Aij >
−
√

200
6

206
− 21

20(
1

e
Bij ·20

−
√

200
6

206·eBij ·
√
20

) . Let Bij = 0. Then at a distance of 1 the value of

Aij >
69

10( 1
10
−8
√

200)
, which can be satisfied for any positive Aij . Similarly at a distance of

2 the value of Aij >
64− 21

20
7 , which may be satisfied for positive values of Aij .

Case 3, d = 2: In this case the energy between i and j at a distance of 2 must be −1, and

the energy must be greater than this at every distance less than 2. Let qi ·qj = 1. To set the

energy equal to −1 at a distance of 2 let
Aij

eBij20
− Cij

206
+ 1

20 = −1. This can be rearranged

to give Cij =
Aij206

eBij20
+ 206 + 205. Let Bij = 6 ln(10)

10 , giving Cij =
Aij ·206

1012
+ 206 + 205.

For any distance smaller than 2, the interaction must be greater than −1. This gives the

equations
Aij

103
√

2
−

Aij20
6

1012
+206+205

2003
+ 1√

200
> −1 and

Aij
103
−

Aij20
6

1012
+206+205

106
+ 1

10 > −1. These can

be rearranged to give Aij

(
1

103
√
2
− 1

106·503

)
− 205·21

2003
+ 1√

200
> −1 and Aij

(
1

103
− 1

106·56
)
−

205·21
105

+ 1
10 > −1. These can be further rearranged to give Aij >

205·21
2003

− 1√
200(

1

102
√
3
− 1

1012·26·
√
50

) and

Aij >
205·21
105

− 1
10(

1
103
− 1

106·56

) . As neither case provides an upper bound on value of Aij , there exists

some positive value of Aij satisfying these equations.

Case 4, greater than M at every distance: The final case is where the energy between

i and j is greater than M at every distance. This can be done by setting Aij = 1, Bi,j = 0

and Ci,j = 0. With these parameters, the energy equation becomes 1+
qi·qj
d′ , which is greater

than −1 for any distance d′ ∈ [10,
√

200, 20] and pair of unit charges qi = ±1, qj = ±1.

Proposition 2. The Buckingham-Coulomb potential belongs to the controllable class CF .

Proof. To show that UBC belongs to F , it is sufficient to provide a constructive method

to determine the force field parameters such that for any value a ∈ R and a pair of ions

i, j the energy UBC(i, j) = a. Let i and j be at a distance of rij with arbitrary charges

qi and qj , the parameters may be set so that the potential at a distance of rij is a. The

value of Bi,j is set to 0 and the values of Ai,j and Ci,j as follows depending on whether a
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is positive or not. If a > 0, then:

Ai,j =

a if qiqj > 0;

a+
|qiqj |
rij

otherwise.
and Ci,j =

qiqjr5
ij if qiqj > 0;

0 otherwise.

If a ≤ 0, then:

Ai,j =

0 if qiqj > 0;

|qiqj |
rij

otherwise.
and Ci,j =

|a|r6
ij + qiqjr

5
ij if qiqj > 0;

|a|r6
ij otherwise.

In this case of the Buckingham-Coulomb potential, the equation becomes

UBC(i, j) = Ai,j −
Ci,j
r6
i,j

+
qiqj
rij

.

The Coulomb potential,
qiqj
rij

, is cancelled either by adding qiqjr
5
ij to Ci,j , if qiqj > 0, or

|qiqj |
rij

to Ai,j in the case qiqj ≤ 0. In the first case the energy added by the Coulomb

potential is
|qiqj |
rij

, which is cancelled by the addition of qiqjr
5
ij when multiplied by the −1

r6ij

term applied to Ci,j . Otherwise the Coulomb energy is
−|qiqj |
rij

, which is cancelled out by

the relevant addition from Ai,j . With the Coulomb energy removed, a is either left as part

of the Aij term, if a > 0, or part of the Cij term otherwise.

2.1.2.2 The Generalised Ising Model

One further chemically motivated energy function studied in this thesis is the generalised

Ising model. The basic Ising model corresponds to the problem of colouring an edge-

weighted grid G = (V,E) from a set of spins. At its most basic, the spins corresponds to

values of ±1. The goal of the Ising model problem is to minimise the value of the energy

function
∑

(i,j)∈E
Wij · Ci · Cj where Wi,j is the weight of edge Ei,j and Ci is the colour of

vertex i. In the classic Ising model the interaction is restricted to the just the immediate

neighbourhood, however there have been many generalisations to allow for interactions at

longer distances.

The Ising model has been heavily studied from a computational perspective, with

results on the hardness of the model in three dimensions [9], as well as the polynomial

time tractability in the planar case [20]. Despite the challenges, there are approximation
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techniques through the formulation of the Ising model as a max-cut problem [10]. This

allows approximation algorithms such as the well known semi-definite linear programming

approach due to Goemans and Williamson [40] to be applied for the Ising model.

This work focuses on a generalisation of the n-vector model, itself a generalisation of the

Ising model introduced by Stanley [98] to better represent the set of possible spins states of

quantum particles. A spin sate may be thought of in an abstract sense as colours determin-

ing the interactions. Each spin state is represented by a unit length vector, with Ci denoting

the vector corresponding to the colour of vertex i. In the n-vector model, each state is

represented by a vector of length n, with the energy function given as
∑

(i,j)∈E
W (Ei,j)·Ci ·Cj

where Ci · Cj denotes the standard Euclidean inner product of the vectors corresponding

to Ci and Cj .

This work looks at the n-vector Ising model with radius r generalisation of the n-vector

model to account for changes to the interaction between as distances increases. At a high

level, the idea is to create a set of vectors corresponding to each combination of colour

and d ∈ d(r) where r is the maximum interaction distance. In this way, each colour can

be thought of as corresponding to a set of |d(r)| vectors, each specifying the interaction

at a difference distance. The interactions between two vertices c1 and c2 at a distance of

d ∈ d(r) is determined by the inner product of the dth vector in each set.

Formally, the n-vector model with radius contains a set C of colours each corresponding

to a vector of |d(r)| vectors. Let c[d] denote the vector corresponding to distance d. The

interaction between two vertices coloured c1 and c2 at a distance of d is the inner product

of c1[d] and c2[d], denoted c1[d] · c2[d]. Using this interaction, the energy of a grid coloured

using some set of vertex sets is given by:

∑
d∈d(r)

∑
vi,vj∈V

Ci[d] · Cj [d] d = d(vi, vj)

0 d 6= d(vi, vj)

Proposition 3. The 2-radius n-vector Ising model belongs to the 2-distance common min-

imal value class CMV(2).

Proof. In order to show that the 2-radius n-vector Ising model belongs to the class CMV(2),

it is necessary to show that there exists a set of parameters for each distance d ∈ [1,
√

2, 2]

such that (1) Ci[d] · Cj [d] = m (2) Ci[d
′] · Cj [d′] > m for every d′ ∈ [1,

√
2, 2] where d′ 6= d

and (3) there exists a set of parameters such that for ever distance Ci[d
′] · Cj [d′] > m for
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every d′ ∈ [1,
√

2, 2]. Here m = −2√
2q−2

where q is the number of colours. Further, each

vector has length q2. The jth entry of Ci[d], denoted Ci[d, j] is set to ± 1√
2q−2

if j = t · q+ i

or j = i · q+ t for some t ∈ [q]. Otherwise, the value of Ci[d, j] is set to 0. Note that given

two vectors Ci[d] ·Cj [d] = Ci[d, q · i+ j] ·Ci[d, q · i+ j] +Ci[d, q · j+ i] ·Cj [d, q · j+ i]. Then

to have Ci[d] · Cj [d] = m, let Ci[d, q · i + j] and Cj [d, q · j + i] be set to −1√
2q−2

and both

Cj [d, q ·i+j] and Ci[d, q ·j+i] be set to 1√
2q−2

. On the other hand, to set Ci[d] ·Cj [d] = −m
let Ci[d, q · i + j], Ci[d, q · j + i], Cj [d, q · i + j] and Cj [d, q · j + i] be set to 1√

2q−2
. By

constructing 3 sets of vectors, the resulting model belongs to CMV(2).

2.1.3 Pairwise Energy Minimisation for Periodic Grid Colouring

This section introduces the first set of abstract versions of csp. More precisely, this section

considers the generalisation of the discrete crystal structure problem to the problem of

minimising average pairwise energy in the periodic grid colouring problem. There are two

versions of this problem that are studied here. Informally, these can be thought of as the

general case, where the dimensions of the unit cell is undefined, and the fixed size case,

where the dimensions of the unit cell are given. Formally, these problems are stated as:

Problem 1. The pairwise energy minimisation problem over C on Zd

Input: A goal energy g ∈ Q, a set of colours C, a number of dimensions d ∈ Z an

energy function f(θ(c1, c2), r) :
(
c1, c1 ∈ C, r ∈ R, θ(c1, c2) ∈ Rp

)
7→ R and

a set of |C|2 parameters θ(c1, c2) ∈ Rp.
Question: Does there exist a unit cell U where

∑
~x∈U

∑
~y∈Zd

f(D(~x,~y),θ(U(~x),U(~y)))
|V (U)| ≤ g.

Problem 2. The fixed period pairwise energy minimisation problem over C on Zd

Input: A goal energy g ∈ Q, a dimension vector (n1, n2, . . . , nd) a set of colours C,
an energy function, f(θ(c1, c2), r) :

(
c1, c1 ∈ C, r ∈ R, θ ∈ Rp

)
7→ R and a

set of |C|2 parameters θ(c1, c2) ∈ Rp.
Question: Does there exist a unit cell U of dimensions n1 × n2 × . . .× nd where∑

~x∈U

∑
~y∈Zd

f(θ(U(~x),U(~y)),D(~x,~y))
|V (U)| ≤ g.

These abstractions of csp serve two purposes. First, they generalise the problem from the

highly specific chemical motivation to a more general computational problem. Secondly,

the restriction to the discrete setting simplifies the reasoning, particularly by restricting the

number of possible distances. In addition to the pairwise energy minimisation problem over
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C on Zd and fixed period pairwise energy minimisation problem over C on Zd problems, this

work considers one further generalisation, the charge neutral pairwise energy minimisation

problem over C on Zd (and the charge neutral fixed period pairwise energy minimisation

problem over C on Zd), defined as:

Problem 3. The Charge Neutral Pairwise Energy Minimisation Problem on Zd

Input: A goal energy g ∈ Q, a set of colours C, a number of dimensions d ∈ Z an

energy function f(c1, c2, r, θ(c1, c2)) :
(
c1, c1 ∈ C, r ∈ R, θ(c1, c2) ∈ Rp

)
7→ R

and a set of |C|2 parameters θ(c1, c2) ∈ Rp.
Question: Does there exist a charge neutral unit cell U where∑

x∈U

∑
y∈Zd

f(U(x),U(y),D(x,y),θ(U(x),U(y)))
|V (U)| ≤ g.

Problem 4. The Charge Neutral Fixed Period Pairwise Energy Minimisation Problem on

Zd

Input: A goal energy g ∈ Q, a vector of dimensions (n1, n2, . . . , nd), a set of

colours C, an energy function,

f(c1, c2, r, θ(c1, c2)) :
(
c1, c1 ∈ C, r ∈ R, θ ∈ Rp

)
7→ R and a set of |C|2

parameters θ(c1, c2) ∈ Rp.
Question: Does there exist a charge neutral unit cell U of dimensions n1 × n2 × . . .

×nd where
∑
x∈U

∑
y∈Zd

f(U(x),U(y),D(x,y),θ(U(x),U(y)))
|V (U)| ≤ g.

2.1.4 Pairwise Energy Minimisation under the Deletion Operation

In all problems considered in this section, the input is assumed to be a unit cell U as

described in Section 2.1.1. The objective is to select a set of vertices in U such that by

replacing them with the colour representing empty space, the average energy decreases. As

the non-empty positions are fixed in the initial input, it is easier to treat the input instead

as a weighted geometric graph.

Crystals as weighted geometric graphs. The unit cell of a crystal may be thought

of as a geometric graph G = (V,E) in R3. Given a unit cell U , let W ⊆ U correspond to

the set of positions in U that are coloured with any colour other than the one representing

empty space. For each position x ∈ W , a vertex vx is constructed. The vertex is given

a weight equal to the charge of the corresponding ion. Given two vertices vx, vy ∈ V ,

corresponding to positions x and y respectively, the edge (vx, vy) is given a weight equal
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to f(θ(U(x), U(y)), D(vx, vy)). For notation w(v) is used to denote the weight of a vertex

and w((u, v)) the weight of the edge between vertices u and v. A graph constructed in

this way is referred to as a Crystal Graph. For notation, given a crystal graph G = (V,E)

weighted by the energy function f , f(G) is used to denote the total pairwise energy of G,

i.e. f(G) =
∑

(u,v)∈E
w((u, v)).

In the context of the deletion operation, crystals are referred to in terms of the cor-

responding crystal graph. Using the terminology of the crystal graph, the concept of

neutrality for a subset of vertices may be redefined as:

Definition 6. A set of vertices R ⊂ V is neutral if
∑
vi∈R

w(vi) = 0.

The k-Charge Removal Problem The k-Charge Removal problem, henceforth k-

charge removal, takes as input a crystal graph G corresponding to a “dense” initial

arrangement of ions, with the goal of removing some vertices in order to minimise the

energy of the new subgraph G′ ⊂ G. It is assumed that the initial graph is neutral by Def-

inition 6. As G′ must also be neutral, any set of vertices which is removed must therefore

be neutral. A natural number k of charges to remove is chosen, as defined in Definitions 8

and 9. In practical applications, the value of k may be chosen either using intuition from

chemistry, or by exhaustively checking each value of k.

Definition 7. For any set S ⊆ V, S+ denotes the set of positively charged vertices in S,

and S− the set of negatively charged vertices.

Definition 8. A set of k-charges R in a crystal graph (V,E) is a neutral set of vertices,

where R ⊆ V and

∣∣∣∣∣ ∑v∈R+

w(v)

∣∣∣∣∣ =

∣∣∣∣∣ ∑v∈R−w(v)

∣∣∣∣∣ = k.

Informally, a set of k-charges is a set of vertices with a net charge of 0, where the magnitudes

of the sums of all positively charged vertices is k, as is the sum of all negatively charged

vertices.

Definition 9. The removal operation of a set of vertices R from a graph G = (V,E)

returns the graph G′ = (V ′, E′), where V ′ = V \R and E′ is the set of edges in E with no

endpoint in R.

In other words, a removal of R from G returns the graph G′ that is the complement of the

graph induced by R.
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Problem 5. k-Charge Removal (k-charge removal)

Input: A crystal graph G, with edges weighted by a given common energy

function U , a natural number k and a goal energy g ∈ R.

Question: Does there exist a set of k-Charges R ⊂ V such that removing R from G

returns a graph G′, where U(G′) ≤ g?

The k≥-Charge Removal Problem One variation of k-charge removal is the k≥-

Charge Removal problem, denoted k≥-charge removal. This problem takes the same

input as in k-charge removal, however rather than looking to remove a set of exactly

k-charges, it is instead sufficient to remove a neutral set of at least k positive and negative

charges. In this generalisation, vertices of total weight more than k may be removed,

provided the cell remains neutral. Note that any removal of exactly k is also acceptable

for this generalisation.

Definition 10. A set of k≥-charges R from a crystal graph (V,E) is a neutral subset,

where R ⊆ V and
∑

vi∈R+

w(vi) ≥ k.

Problem 6. k≥-Charge Removal (k≥-charge removal)

Input: A crystal graph G, with edges weighted by a given common energy

function U , a natural number k, and a goal energy g ∈ R.

Question: Does there exist a set of k≥-Charges R ⊂ V such that removing R

from G returns a graph G′, where U(G′) ≤ g?

Proposition 4. A solution to k-charge removal or k≥-charge removal can be ver-

ified in polynomial time.

Proof. A solution to k-charge removal contains the set of charges R that are removed.

This can be verified as a set of k≥-charges by simply summing up the positive and negative

weights, checking that the set is neutral and that

∣∣∣∣∣ ∑vi∈R+

w(vi)

∣∣∣∣∣ = k for k-charge removal

or

∣∣∣∣∣ ∑vi∈R+

w(vi)

∣∣∣∣∣ ≥ k for k≥-charge removal. The time complexity is of the order of

O(|R|). Similarly the sum of the edges in the original graph G that do not have an

endpoint in R can be checked against the goal value g. This is done in O(|V |2) time,

as the graph is complete. As no step takes more than O(|V |2) time, a solution to either

k-charge removal or k≥-charge removal can be verified in polynomial time. Hence

k-charge removal and k≥-charge removal fall into the class of NP problems.
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The Minimal-k≥-Charge Removal Problem An alternative variation of k≥-charge

removal is the minimal-k≥-Charge Removal problem, denoted minimal-k≥-charge re-

moval. This also serves as a generalisation of k-charge removal, where the goal is to

get close to a set of k-charges, accepting that it may not be possible to reach the exact

value. In this problem a minimal set of k≥-charges is removed.

Definition 11. A set R of k≥-charges is minimal if there exists no subset R′ ⊂ R such

that

∣∣∣∣∣ ∑vi∈R′+ w(vi)

∣∣∣∣∣ ≥ k and

∣∣∣∣∣ ∑vi∈R′+ w(vi)

∣∣∣∣∣ =

∣∣∣∣∣ ∑vj∈R′−w(vj)

∣∣∣∣∣.
Informally, Definition 11 means that there is no way of getting closer to a set of k-charges

from the set, without having fewer than k charges. It follows that for a given crystal graph,

there may be multiple minimal k≥-charge sets for a given k. A removal of k≥-charges is

minimal if the set of k≥-charges is minimal. It may be noted that a set of k-charges is

always a minimal set of k≥-charges.

Problem 7. Minimal-k≥-Charge Removal (minimal-k≥-charge removal)

Input: A crystal graph G, with edges weighted by a given common energy

function U , a natural number k, and a goal energy g ∈ R.

Question: Does there exist a minimal set of k≥-charges R ⊂ V such that

removing R from G returns a graph G′, where U(G′) ≤ g?

Proposition 5. It is NP-hard to verify if a set of k≥-charges is minimal when no bounds

are given on the charges of the vertices.

Proof. This is shown by a reduction from the subset-sum problem. In the subset-sum

problem there is a set of values S, and a goal k. The task is to choose some subset S′ ⊆ S
such that

∑
i∈S′

i = k. Note that this problem remains NP-complete in the case the input is

only positive integers.

Let I = (S, k) be an instance of the subset sum problem for the set S with a goal value

of k. Given I, a crystal graph is created as follows. For each integer i ∈ S a new vertex with

a charge of i is created, note these correspond to the set V +. Two further ions are created,

the first having a charge of −k and the second having a charge of −

(( ∑
vi∈V +

w(vi)

)
− k

)
,

these correspond to V −. The value k′ is chosen as the greater of k and

( ∑
vi∈V +

w(vi)

)
−k.
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Given I, we claim that the only minimal k′-Charge Removal, R, from S = (V,E) is

R = V if and only if there is no solution to I. To disprove that R is minimal there must

be some subset R′ ⊂ R that is also a set of k≥-charges. As k′ charges must be removed,

any such V ′− must only contain the vertex in V − with a charge of −k′. Therefore if this

claim is false, there must be a set R′+ ⊆ R+ such that
∑

vi∈R′+
w(vi) = k′. If there is such a

R′ then there must also be a solution to the subset sum instance as either R′+ or R+ \R′+.

This is shown as if k′ = k, the values in R′+ must sum to k, satisfying I. Conversely, if

there is k′-Charge removal R ⊂ V then following the above arguments, there must be a

solution to I.

In the other direction, if there is a solution to I then trivially there must be exist

such a R′+ that would make R′ non-minimal. Similarly if there is no valid solution to

I then the only minimal set of k-charges is the complete set of ions. Therefore it may

not be determined if the a solution is minimal in polynomial time. Subsequently as a

minimal set of charges for k≥-charge removal is required, a solution can not be verified

in polynomial time unless P = NP , therefore it is not in NP in the general case.

Corollary 1. It is NP-hard to determine if an instance of k-charge removal has a valid

solution in the case there are no bounds on the charges of the vertices.

Proof. It follows from the arguments of Proposition 5 that an instance of k-charge re-

moval may be constructed for a subset sum instance I = (S, k) such that it is only

satisfiable if the subset sum instance is.

Lemma 1. A set of k-Charges may be verified as minimal in polynomial time for charges

bounded by a polynomial size.

Proof. In the case when the charges of the vertices are bounded, a solution to the subset

sum may be found in polynomial time, for example, relative to either the upper limit on

the weights due to Pisinger [83], or the number of distinct weights and the goal values due

to Axiotis and Tzamos [8]. Using these algorithms a set of k-Charges R can be verified as

minimal. This is done by, for every value 1 ≤ t ≤
∑

vi∈R+

w(vi)−k checking if there a subset

of charges R′+ ⊆ R+ and R′− ⊆ R− such that t =
∑

vi∈R′+
w(vi) =

∣∣∣∣∣ ∑vi∈R′−w(vi)

∣∣∣∣∣. If there

exists such a solution for any t then R is not minimal.
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The claimed energy may also be verified by checking the sum of pairwise interactions

relative to U , with may trivially be done in Polynomial time by the definition of U . There-

fore under these restrictions k≥-charge removal is in NP.

2.2 Words and Cyclic Words

In order to represent crystals in a discrete manner, this section introduces the concept of

combinatorial crystals. Informally, a combinatorial crystal can be thought of as a descrip-

tion of crystal in discrete space. Here, a combinatorial crystal is represented explicitly by

constructing an alphabet contain a symbol for both the empty space and for each ion in

the crystal. In order to represent a crystal in this manner we turn to cyclic words.

At a high level, a cyclic word can be thought of as an infinite word resented by a

period. This fits naturally with the unit cell as a representation of the crystal. Due to the

infinite nature of cyclic words, they are generally considered in terms of equivalence classes.

This thesis looks at several such equivalence classes, including the classes of necklaces,

bracelets, necklaces with constrained Parikh vectors, necklaces with forbidden subwords,

and multidimensional necklaces. This section is the first look at the most basic of these

classes, those being the sets of necklaces and bracelets. Section 2.2.1 looks at necklaces

where some constraints are placed on the corresponding Parikh vector. Section 2.2.2 looks

at necklaces with a set of forbidden subwords. Section 2.2.3 looks at multidimensional

words and necklaces. Finally Section 2.2.4 provides a brief discussion on how to represent

a crystal as a multidimensional necklace.

In order to define necklaces and bracelets, the following notions are introduced regarding

words. Let Σ be a finite alphabet. For the remainder of this thesis, let q = |Σ|. In general,

this work assumes Σ to be made of symbols corresponding to the set {1, 2, 3, . . . , q}, ordered

such that 1 < 2 < 3 < . . . < q. We denote by Σ∗ the set of all words over Σ and by Σn

the set of all words of length n. The notation w̄ is used to clearly denote that the variable

w is a word. The length of a word ū ∈ Σ∗ is denoted |ū|. We use ūi, for any i ∈ 1 . . . |ū|
to denote the ith symbol of ū. Given two words w̄, ū ∈ Σ∗, the concatenation operation is

denoted w̄ : ū and returns the word of length |w̄| + |ū| where (w̄ : ū)i equals either w̄i, if

i ≤ |w̄| or ūi−|w̄| if i > |w̄|. The reversal operation on a word w̄ = w̄1w̄2 . . . w̄n, denoted by

w̄R, returns the word w̄n . . . w̄2w̄1.

Let [n] return the ordered set of integers from 1 to n inclusive. More generally, let [i, j]

return the ordered set of integers from i to j inclusive. Given 2 words ū, v̄ ∈ Σ∗ where |ū| ≤
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|v̄|, ū = v̄ if and only if |ū| = |v̄| and ūi = v̄i for every i ∈ [|ū|]. A word ū is lexicographically

smaller than v̄ if there exists an i ∈ [|ū|] such that ū1ū2 . . . ūi−1 = v̄1v̄2 . . . v̄i−1 and ūi < v̄i.

For example, given the alphabet Σ = {a, b} where a < b, the word aaaba is smaller than

aabaa as the first 2 symbols are the same and a is smaller than b. For a given set of words

S, the rank of v̄ with respect to S is the number of words in S that are smaller than v̄.

The translation of a word w̄ = w̄1w̄2 . . . w̄n by r ∈ [n− 1] returns the word w̄r+1 . . . w̄n

w̄1 . . . w̄r, and is denoted by 〈w̄〉r, i.e. 〈w̄1w̄2 . . . w̄n〉r = w̄r+1 . . . w̄nw̄1 . . . w̄r. Under the

translation operation, ū is equivalent to v̄ if v̄ = 〈w̄〉r for some r. The tth power of a

word w̄ = w̄1 . . . w̄n, denoted w̄t, is equal to w̄ repeated t times. For example (aab)3 =

aabaabaab. A word w̄ is periodic if there is some word ū and integer t ≥ 2 such that

ūt = w̄. Equivalently, word w̄ is periodic if there exists some translation 0 < r < |w̄| where

w̄ = 〈w̄〉r. A word is aperiodic if it is not periodic. The period of a word w̄ is the length

of the smallest word ū for which there exists some value t for which w̄ = ūt.

A cyclic word, also called a necklace, is the equivalence class of words under the trans-

lation operation. For notation, a word w̄ is written as w̃ when treated as a necklace. Given

a necklace w̃, the necklace representative is the lexicographically smallest element of the

set of words in the equivalence class w̃. The necklace representative of w̃ is denoted 〈w̃〉,
and the rth shift of the necklace representative is denoted 〈w̃〉r. The reversal operation

on a necklace w̃ returns the necklace w̃R containing the reversal of every word ū ∈ w̃,

i.e. w̃R = {ūR : ū ∈ w̃}. Given a word w̄, 〈w̄〉 denotes the necklace representative of the

necklace containing w̄, i.e. the representative of ũ where w̄ ∈ ũ. By convention the set of

necklaces of length n over an alphabet of size q is denoted N n
q , the size of which is given

by |N n
q |. An aperiodic necklace, known as a Lyndon word, is a necklace representing the

equivalence class of some aperiodic word. Note that the number of unique words repre-

sented by a Lyndon word of length n is n. The set of Lyndon words of length n over an

alphabet of size q is denoted Lnq .

A subword of the cyclic word w̄, denoted w̄[i,j] is the word ū of length |w̄| + j − i −
1 mod |w̄||) such that ūa = w̄i−1+a mod |w̄|. For notation ū v w̄ denotes that ū is a subword

of w̄. Further, ū vi w̄ denotes that ū is a subword of w̄ of length i. If w̄ = ūv̄, then ū is

a prefix and v̄ is a suffix. A prefix or suffix of a word ū is proper if its length is smaller

than |ū|. For notation, the set S(v̄, `) is defined as the set of all subwords of v̄ of length `.

Formally let S(v̄, `) = {s̄ v v̄ : |s̄| = `}. Further, S(v̄, `) is assumed to be in lexicographic

order, i.e. S(v̄, `)1 ≥ S(v̄, `)2 ≥ . . .S(v̄, `)|v̄|.

As both necklaces and Lyndon words are classical objects, there are many fundamental
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results regarding each objects. The first results for these objects were equations determin-

ing the number of necklaces or Lyndon words of a given length. The number of necklaces

is given by the equation |N n
q | = 1

n

∑
d|n
φ
(
n
d

)
qd where φ(n) is Euler’s totient function. Sim-

ilarly the number of Lyndon words is given with the equation |Lnq | =
∑
d|n
µ
(
n
d

)
|N d

q |, where

µ(x) is the Möbius function. Graham et. al. provide a proof of these equations [42]. The

problem of generating the set of all necklaces in lexicographic order was solved first by

Fredricksen and Maiorana [31]. This algorithm was shown to run in constant amortised

time (CAT) by Ruskey et. al. [88]. A more direct CAT algorithm for generating the set

of all necklaces was introduced by Cattell et. al. [17].

Recently the dual problems of ranking and unranking necklaces have been studied.

The rank of a word w̄ in the set of necklaces N n
q is in this work defined as the number

of necklaces with a canonical representative smaller than w̄. The unranking process is

effectively the reverse of this. Given an integer i ∈ [|N n
q |], the goal of the unranking

process for i is to determine the necklace N n
q with a rank of i. Lyndon words were first

ranked by Kociumaka et. al. [60] without tight complexity bounds. The first algorithm

to rank necklaces was given by Kopparty et al. [61], also without tight bounds on the

complexity. A quadratic time algorithm for ranking both Lyndon necklaces was provided

by Sawada et al. [92], who also provided a cubic time unranking algorithm.

A bracelet is the equivalence class of words under the combination of the translation

and the reversal operations. In this way a bracelet can be thought of as the union of

two necklace classes w̃ and w̃R, hence ŵ = w̃ ∪ w̃R. Given a bracelet ŵ, the bracelet

representative of ŵ, denoted by [ŵ], is the lexicographically smallest word ū ∈ ŵ. In a

similar manner to necklaces, the set of bracelets of length n over an alphabet of size q is

denoted Bnq , with |Bnq | denoting the size of this set.

The number of bracelets of length n over an alphabet of size q is given by the equation

|Bnq | =

1
2 |N

n
q |+ 1

4(q + 1)qn/2 n is even.

1
2 |N

n
q |+ 1

2(q + 1)q(n+1)/2 n is odd.
, a proof of which is given by Gilbert and

Riordan [38]. As with necklaces, a CAT algorithm for the generation of bracelets has been

derived [93].

In order to rank bracelets, some useful subclasses of necklaces and bracelets must be

introduced. A necklace w̃ is palindromic if w̃ = w̃R. This means that the reflection of

every word in w̃ is also in w̃, i.e. given ū ∈ w̃, ūR ∈ w̃. Note that for any word w̄ ∈ ã,

where ã is a palindromic necklace, either w̄ = w̄R, or there exists some translation i for
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which 〈w̄〉i = w̄R.

Let ũ and ṽ be a pair of necklaces belonging to the same bracelet class. For simplicity

assume that 〈ũ〉 < 〈ṽ〉. The bracelet û encloses a word w̄ if 〈ũ〉 < w̄ < 〈ṽ〉. An example

of this is the bracelet û = aabc which encloses the word w̄ = aaca as aabc < aaca < aacb.

The set of all bracelets which enclose w̄ are referred to as the set of bracelets enclosing w̄.

2.2.1 Necklaces with Constrained Parikh Vectors

One of the most studied restrictions on the set of necklaces is the set of fixed-content

necklaces. The content of a word w̄ is defined as the number of times each symbol in the

alphabet Σ appears in w̄. The content of a word is given in the form of a Parikh vector p

where pi is the number of times the ith symbol of Σ appears in the word. For notation P(w̄)

returns the Parikh vector of the word w̄. For example, the word aabb over the alphabet

{a, b, c} has the Parikh vector P(aabb) = (2, 2, 0).

The set of fixed content necklaces is the set of necklaces sharing a given Parikh vec-

tor. For notation, let Nn
q (p) denote the set of necklaces sharing the Parikh vector p,

i.e. N n
q (p) = {w̃ ∈ N n

q |P(w̃) = p}. For a binary alphabet, fixed-content necklaces are

sometimes referred to as fixed-density necklaces. As in the unconstrained case, the set of

fixed-content necklaces has been heavily studied. The number of fixed-content necklaces

was given by Gilbert and Riordan [38] as:

|N n
q (p)| = 1

n

∑
d| gcd(p1,p2,...,pq)

φ(d)

(
n
d

)
!(p1

d

)
! . . .

(pq
d

)
!

As in the unconstrained case, constant amortised time algorithms have been developed

to generate fixed-density necklaces [89], fixed content necklaces [94] and fixed content

bracelets [58]. More recently, ranking and unranking algorithms have been presented for

fixed density necklaces [45] running in O(n3) and O(n4) time respectively.

We focus on a generalisation of this constraint, instead looking at necklaces correspond-

ing to Parikh vectors that solve some given set of linear equations. At a high level, the

idea is to represent each variable in the equation with a symbol. More precisely, given a

system of m linear Diophantine equations for q variables determined by the m × q size

matrix A ∈ Nm,q and m-length vector C ∈ Nm, the alphabet Σ(A) = {1, 2, . . . , q} is con-

structed. Let S be a positive integer solution to the system of Diophantine equations, i.e.

a vector such that A · S = C. Given a symbol x ∈ Σ(A),w(x) is used to denote the vector
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corresponding to the xth column of A, informally the vector corresponding to the impact of

adding 1 to the xth variable in the system of linear equations. The solution S is represented

using Σ(A) by the word 1S1 : 2S2 : . . . : qSq , i.e. the word containing Si copies of symbol i.

In the other direction, given the word w̄ ∈ Σ(A)∗ the Parikh vector P(w̄) may be used as a

potential solution to the system of equations. Given a system of equations A · x = C and

length n, the Parikh vector of the word w̄ ∈ Σ(A)n solves A · x = x if A · P(w̄) = C. This

thesis makes the following assumptions about every system of linear equations defined by

A · x = C:

• The number of equations is m.

• The number of variables is q

• Every entry of A, A[i, j], is at least 0, i.e. A[i, j] ≥ 0,∀i ∈ [m], j ∈ [q].

• Every value of C is at least 0, i.e. C[i] ≥ 0, ∀i ∈ [m].

This model is used in two distinct approaches. First, this work introduces n-weight Parikh

vectors that are solutions to a given system of linear equations. A Parikh vector P has

weight n if the sum of every entry equals n, i.e. P1 +P2 +. . .+Pq = n. In order to represent

Parikh vectors uniquely, the canonical representation for a given Parikh vector P is derived

in the same way as the word representing a vector solution to a system of linear equations

described above. Formally, given a Parikh vector P = (P1, P2, . . . , Pq) for the alphabet Σ,

the canonical form of P, denoted 〈P〉, is the word 1P1 : 2P2 : . . . : qPq . For simplicity, we

refer to the canonical form of a Parikh vector as a Parikh word. Note that every subword

of a Parikh word is itself a Parikh word for the Parikh vector of the subword. The set of all

n-weight Parikh vectors solving a given set of Diophantine equations is denoted P(n,A,C).

The set P(n,A,C) is assumed to be ordered lexicographically with respect to the canonical

representation of each Parikh vector, i.e. given P,Q ∈ P(n,A,C), P < Q if and only if

〈P〉 < 〈Q〉.
The second approach is the more general set of n-length necklaces with Parikh vectors

solving a given system of linear equations. A word w̄ ∈ Σ(A)n corresponds to a Parikh

vector solving the linear equation defined by the matrix A ∈ Nm,q and vector C ∈ Nm if

A · P(w̄) = C. Note than any Parikh word corresponding to an n-weight Parikh vector

that solves A · x = C is also the canonical representation of a n-length necklace solving

A ·x = C. For notation, the set of necklaces with Parikh vectors corresponding to solutions
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of the set of linear equations defined by the matrix A ∈ Nm,q and vector C ∈ Nm is denoted

N n
q (A,C).

2.2.2 Necklaces with Forbidden Subwords

The final class of one dimensional cyclic words this work looks at is the set of necklaces with

forbidden subwords. Informally, this is the set of necklaces for a given length and alphabet

such that no necklace contains any subword from some set F . The set of necklaces of length

n over an alphabet of size q with no subword in the set F is denoted N n
q (F). Similarly

the set of words with no subword in F is denoted Fn
q (F).

Existing results due to Ruskey and Sawada have focused on the case of a single subword,

providing a method to count and generate the set of necklaces in this setting [90]. The

counting equation may be generalised to the case where F is of arbitrary size following the

same arguments laid out by Ruskey and Sawada in [90] giving:

|N n
q (F)| = 1

n

∑
d|n

φ
(n
d

)
|Fn
q (F)|

2.2.3 Multidimensional Necklaces

In order to establish multidimensional necklaces, notation for multidimensional words

must first be introduced. A d-dimensional word over Σ is an array of dimensions n =

(n1, n2, . . . , nd) of elements from Σ. In this work we tacitly assume that n1 ≤ n2 ≤ . . . ≤ nd.
Let |w̄| be the dimensions of w̄. Given a vector of dimensions n = (n1, n2, . . . , nd), Σn is

used to denote the set of all words of dimensions n over Σ. Let N = n1 · n2 · . . . · nd for a

dimension vector n. For notation, given a vector n = (n1, n2, . . . , nd) where every ni ≥ 0,

[n] is used to denote the set {(x1, x2, . . . , xd) ∈ Nd|∀i ∈ [d], xi ≤ ni}. Similarly [m,n] is

used to denote the set {(x1, x2, . . . , xd) ∈ Nd|∀i ∈ [d],mi ≤ xi ≤ ni}.
For a d-dimensional word w̄, the notation w̄(p1,p2,...,pd) is used to refer to the symbol

at position (p1, p2, . . . , pd) in the array. Given 2 d-dimensional words w̄, ū such that |w̄| =
(n1, n2, . . . , nd−1, a) and |ū| = (n1, n2, . . . , nd−1, b), the concatenation w̄ : ū is performed

along the last coordinate, returning the word v̄ of dimensions (n1, n2, . . . , nd−1, a+ b) such

that v̄p = w̄p if pd ≤ a and v̄p = ū(p1,p2,...,pd−1,pd−a) if pd > a. See Figure 2.2.

A multidimensional cyclic subword of w̄ of dimensions m is denoted v̄ vm w̄. As

in the one-dimensional case, a subword is defined by a starting position in the original
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w̄ =


a a a b
a a b a
b a a a
b a a a

 , ū =

[
b b b b
b b b b

]
, w̄ : ū =



a a a b
a a b a
b a a a
b a a a
b b b b
b b b b


Figure 2.2: An example of the connotation between the 2D words w̄ and ū.

Slice 1

Slice 2

Slice 3

Slice 4

Canonical Form (0,2) (2,0) (2,2)

Figure 2.3: Example of a 2-dimensional word w̄ of size (4, 4) over a binary alphabet: the
4 slices of w̄; the canonical form of w̄; and three translations of w̄.

word and set of dimensions defining the size of the subword. The subword v̄ v w̄ starting

at position p with dimensions m is the word v̄ such that v̄i = w̄j for all j of the form

(p1 + i1 mod n1, p2 + i2 mod n2, . . . , pd+ id mod nd). Such a subword v̄ is denoted by w̄p,m.

One important class of subwords are slices, an example of which is given in Figure 2.3. The

ith slice of w̄, denoted by w̄i, is the subword of dimensions (n1, n2, . . . , nd−1, 1) starting

at position (i, 1, . . . , 1, 1) of w̄. In the 2D case, the ith slice corresponds to the ith row

of a word. This work uses w̄[i,j] to denote w̄i : w̄i+1 : . . . : w̄j . A prefix of length l for

a multidimensional word w̄ is the first l slices of w̄ in order. A suffix of length l for a

multidimensional word w̄ is the last l slices of w̄ in order. In the two-dimensional case,

prefix and suffix of length l corresponds to the first and last l rows respectively.

A d-dimensional translation r is defined by a vector (r1, r2, . . . , rd). The translation of

the word w̄ of dimensions n by r, denoted 〈w̄〉r returns the word v̄ such that |v̄| = n and

v̄p = w̄j for all j of the form (p1 + r1 mod n1, p2 + r2 mod n2, . . . , pd + rd mod nd). It is

assumed that ri ∈ [0, ni − 1], so the set of translations is equivalent to the direct product

of the cyclic groups Zn1 × Zn2 × . . . × Znd . Given two translations r = (r1, r2, . . . , rd)

and t = (t1, t2, . . . , td) in Zn, t + r is used to denote the translation (r1 + t1 mod n1, r2 +

t2 mod n2, . . . , rd + td mod nd).
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Definition 12. A multidimensional necklace (multidimensional cyclic word) w̃ is an

equivalence class of all multidimensional words under the translation operation.

Informally, given a necklace w̃ containing the word v̄, w̃ contains every word ū where

there exists some translation r such that 〈v̄〉r = ū. Let Nn
q denote the set of necklaces

of dimensions n over an alphabet of size q. As in the 1D case, a canonical representation

of a multidimensional necklace is defined as the smallest element in the equivalence class,

denoted 〈w̃〉. Similarly, given a word v̄ ∈ w̃, 〈v̄〉 denotes the canonical representation of

the necklace w̃, i.e. 〈v̄〉 = 〈w̃〉. To determine the smallest element in the equivalence class,

an ordering needs to be defined. First, we introduce an ordering over translations.

Definition 13. Let Zn be the direct product of the cyclic groups Zn1 × Zn2 × . . . × Znd,

i.e. the set of all translations of words of dimensions n. The translation g ∈ Zn is indexed

by the injective function index(g)→
d∑
i=1

(
gi ·

i−1∏
j=1

nj

)
.

The translation g ∈ Zn is smaller than t ∈ Zn if index(g) < index(t). Note that (0, 0, . . . , 0)

is the smallest translation and (n1−1, n2−1, . . . , nd−1) is the largest. Using this definition

an ordering on multidimensional words is defined recursively. The key idea is to compare

each slice based on the canonical representations. For notation, given two words ū, s̄ ∈ w̃,

let G(ū, s̄) return the smallest translation g where 〈ū〉g = s̄. Note that G can be computed

in O(N2) time by simply checking each translation in Z|ū|.

Definition 14. Let w̄, ū ∈ Σn and let i be the smallest integer such that w̄i 6= ūi. Then

w̄ < ū if either 〈w̄i〉 < 〈ūi〉, or 〈w̄i〉 = 〈ūi〉 and index(G(w̄i, 〈w̄i〉)) < index(G(ūi, 〈ūi〉)).
Further, given necklaces w̃ and ũ, w̃ < ũ if and only if 〈w̃〉 < 〈ũ〉.

An example of the ordering is given in Figure 2.4. In what follows, Nn
q is assumed to be

ordered as in Definition 14. The rank of a necklace w̃ ∈ Nn
q is defined as the number

of necklaces smaller than w̃ in Nn
q . In the other direction, the ith necklace in Nn

q is

the necklace w̃ ∈ Nn
q with the rank i, i.e. the necklace w̃ for which there are i smaller

necklaces.

In order to answer some of the key questions regarding multidimensional necklaces,

there are two further concepts that need to be defined for multidimensional necklaces. The

first is the period of a word. Informally the period of w̄ of dimensions n can be thought of

as the smallest subword that can tile d-dimensional space equivalently to w̄. In order to

define the period of a word, it is easiest to first define the concept of aperiodicity.
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Definition 15. A word w̄ of dimensions n is aperiodic if there exists no subword v̄ v w̄
of dimensions m 6= n such that mi ≤ ni for every i ∈ [1, d], and w̄j = v̄

j
′ where j

′
=

(j1 mod m1, j2 mod m2, . . . , jd mod md) for every position j ∈ n1 × n2 × . . .× nd in w̄.

Definition 16. The period of a word ā of dimensions n, denoted Period(ā), is the aperi-

odic subword b̄ v ā of dimensions m such that āi = b̄
i
′ for every position i ∈ n1×n2×. . .×nd

and i
′
= (i1 mod m1, i2 mod m2, . . . , id mod md).

By Definition 16 every word, including aperiodic ones, has a unique period [34]. In the case

of an aperiodic word w̄, the period is simply w̄. A multidimensional necklace w̃ is aperiodic

if every word v̄ ∈ w̃ is aperiodic. Note that if some word in w̃ is aperiodic, then every

word is. An aperiodic necklace is called a Lyndon word. A related but distinct concept

is that of atranslational words. A word w̄ is atranslational if there exists no translation

g 6= (n1, n2, . . . , nd) such that w̄ = 〈w̄〉g.

Definition 17. A necklace w̃ if dimensions n is atranslational if there exists no pair of

translations g, h ∈ Zn where g 6= h and 〈w̃〉g = 〈w〉h.

In one dimension every aperiodic necklace is atranslational, while in any higher dimension

every atranslational word is aperiodic, although not every aperiodic word is atranslational.

For example

[
a b

b a

]
is aperiodic but not atranslational, as there are only two unique

representations of the cyclic word. On the other hand

[
a a

a b

]
is both atranslational and

aperiodic. For notation, TR(w̄) is used to denote the index of the smallest translation

g ∈ Zn where 〈w̄〉g = w̄. The translational period of a word w̄ is the subword of dimensions

g where g is the smallest translations such that 〈w̄〉g = w̄.

w̄ =


w̄1

w̄2

w̄3

w̄4

 =


a a a b
a a b a
b a a a
b a a a

 , ū =


ū1
ū2
ū3
ū4

 =


a a a b
a a b a
a b a a
b a a a

 , v̄ =


v̄1
v̄2
v̄3
v̄4

 =


a a a b
a a b a
a a b b
b a a a


Figure 2.4: An example of three words, w̄, ū, and v̄, ordered as follows w̄ < ū < v̄. Note
that w̄1 : w̄2 = v̄1 : v̄2 = ū1 : ū2. However, 〈w̄3〉 = 〈ū3〉 = aaab, which is smaller than
〈v̄3〉 = aabb. Further, w̄3 < ū3 as G(w̄3, 〈w̄3〉) = 1 and G(ū3, 〈ū3〉) = 2, which is larger
than 1.
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As in the one dimensional case, constrained cases of these necklaces can be considered.

This work considers only at fixed-content multidimensional necklaces. Given a Parikh

vector p, the set of multidimensional necklaces of dimensions n with the Parikh vector p

is denoted Nn
p .

2.2.4 Combinatorial Crystals

The final concept presented in this chapter is how to represent combinatorial crystals as

cyclic words. Intuitively, a cyclic word provides a natural basis for representing the unit

cell of a crystal in discrete space. As with the unit cell of a crystal, a cyclic word provides

a finite representation for an infinite period structure. For simplicity it is assumed the size

of each “cell”, the smallest unit within the discrete setting, is 1× 1× 1 . . .× 1.

Let U be the unit cell of dimensions n representing some crystal made with ions from

the set S. The alphabet Σ(S) is constructed by making a symbol for each ion in S, with

an additional symbol added for the empty space. The word Ū is constructed from Σ(S)

as a multidimensional word of dimensions n where the symbol at position x of Ū is the

symbol from Σ(S) corresponding to the element or space at position x of U . See Figure

1.4 as an example.



Chapter 3

Undecidability of the Pairwise

Energy Minimisation Problem

The first results we provide are for the pairwise energy minimisation problem over C on

Zd. The main claim of this Chapter is that the pairwise energy minimisation problem over

C on Zd is undecidable for any function in CMV(2). This Chapter is split into three parts.

In Section 3.1, we provide background on the tiling problems from which the undecidablity

result is derived. In Section 3.2, we present the all-distinct r-discretised rhombus periodic

complete assignment problem as an auxiliary problem derived from the k-unique tiling

problem to act as an intermediary step in proving the undecidablity of the pairwise energy

minimisation problem over C on Zd. Finally in Section 3.3 we prove the undecidablity of

the pairwise energy minimisation problem over C on Zd.

3.1 The Tiling Problem

In this section we provide some background on the Tiling Problems that are used as the

basis for later reductions. In a tiling problem we are given a set of tiles, square plates with

a fixed orientation where each edge is coloured from some set of colours C. The goal of a

tiling problem is to completely cover the plane with tiles such that every pair of adjacent

tiles is coloured the same along the shared edge. In this section we introduce the further

constraint that no two copies of the same tile may be within a distance of k of each other.

This is used as an auxiliary problem in order to reduce the classical tiling problem to the

pairwise energy minimisation problem over C on Zd.

45
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Before discussing the new variations of the tiling problem, let us first present some

notation. The edges of the tiles are labelled East, West, North and South such that the

East edge is opposite the West edge, and the South edge is opposite the North edge. More

precisely, given two tiles, v at position (x1, y1) and u at position (x2, y2) respectively such

that |x1 − x2| ≤ 1 and |y1 − y2| ≤ 1, we say that:

x1 < x2 x1 = x2 x1 > x2

y1 < y2 v is North-West of u v is North of u v is North-East of u

y1 = y2 v is West of u v is u v is East of u

y1 > y2 v is South-West of u v is South of u v is South-East of u

A tile t is represented by the four edges composing it. For notation let te be the colour

of the tile t along edge e. A tile t can be represented as t = {tEast, tSouth, tWest, tNorth}.
Given an edge e, e−1 denotes the opposite edge, e.g given e = East then e−1 = West.

A Tile Set is a set of tiles, all of the same size and such that the edges of each tile

are coloured uniquely with respect to orientation. The goal of the Tiling problem is to

assemble copies of the tiles in a given tile set on an infinite plane ruled into squares of the

size of one tile such that:

1. No tile is rotated or reflected.

2. A tile must be placed exactly over one square.

3. The colour of adjacent edges must match.

4. Every square must be covered by one tile.

An example to illustrate this is given by Figure 3.1. This problem is solvable for a given

tile set if and only if such an assembly exists. An assembly is periodic if there exists

some finite region of the plane that may be duplicated so as to solve the tiling problem.

The Periodic Tiling Problem asks if there is a periodic assembly. Both the tiling problem

and the periodic tiling problem are classically undecidable problems [5, 11]. Connections

between this problem and chemistry are well established [87]. In particular the existence of

aperiodic tilings were instrumental in the understanding of quasicrystals, structures that

are close to being crystals without a unit cell [28, 69]. Indeed, our results can be thought of

as asking if the lowest energy state for a given set of ions form a crystal or a quasicrystal.

The main difficulty with encoding the tiling problem into csp is the concept of ori-

entation. In the tiling problem it is integral that each tile is placed under the same
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Tiling 1

Tiling 2

Tiling 3

Figure 3.1: Tiling 1 is invalid as the West and East edges of the tiles are not the same
colours. Tiling 2 is invalid as the tiles are not properly aligned. Tiling 3 is valid, however
it would not be periodic.

orientation. This means that given two adjacent tiles, they must either touch West edge

to East edge, or North edge to South edge. As our setting uses only the colours and

distance between vertices to determine the pairwise energy, the concept of orientation is

difficult to encode. To this end the k-unique radius variant of the tiling problem is intro-

duced. Informally a tiling has a k-unique radius if and only if no two copies of a given

tile are within a distance of k of each other. Let T be a tiling of Z2 such that T (i, j)

returns the tile at position (i, j). The tiling T has a k-unique radius if and only if for every

(i, j), (x, y) ∈ Z2, where D((i, j), (x, y)) ≤ k the tile T (i, j) is distinct from T (x, y), i.e.

T (i, j) 6= T (x, y) where D((i, j), (x, y)) returns the Manhattan distance between (i, j) and

(x, y), i.e. D((i, j), (x, y)) = |i− x|+ |j − y|. An example is provided in Figure 3.2.

Problem 8. The periodic tiling problem with a k-unique radius.

Input: A set of tiles, T , and integer k

Question: Does there exist a periodic tiling of the plane made from T such that

given any tile t at position (x, y) there exists no other copy of t within a

distance of k from (x, y)?
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Figure 3.2: An example of an invalid 1 unique tiling (West) and a valid one (East). Note
that each colour represents a class of tile. The West instance contains two tiles of the
red class within a radius of 1 from the central (green) tile. In contrast every tile within a
distance of 1 from the central tile (red) tile of the East tiling is distinct.

Proposition 6. The periodic k-unique radius tiling problem is undecidable for any k ∈ N.

Proof. It follows from the undecidability of the periodic domino problem that this prob-

lem is undecidable. Given a set of T of tiles with the set of colours C, a new set of

tiles T ′ and colours C′ are constructed as follows. For each colour c ∈ C, a set of

k2 colours are added to C′ labelled ci,j for each i, j ∈ [k]. For each tile t ∈ T where

t = {tEast, tSouth, tWest, tNorth} a set of k8 tiles are constructed containing every tile of the

form {(tEast)i1,j1 , (tSouth)i2,j2 , (tWest)i3,j3 , (tNorth)i4,j4}, for every i1, i2, i3, i4, j1, j2, j3, j4 ∈
[k]. Using these sets observe that any tiling T of T can be converted to a k-unique

tiling of T ′ by replacing the tile at position x, y of T with the tile {(T [x, y]East)x,y mod k,

(T [x, y]South)x,y mod k, (T [x, y]West)x,y mod k, (T [x, y]North)x,y mod k}. In the other direction,

given a k-unique tiling T ′ of T ′, a tiling from T can be constructed by replacing each in

T ′ with the corresponding tile from T .

Problem 9. The fixed period k-unique tiling problem.

Input: A set of tiles, T , integer k, and pair of dimension n1, n2

Question: Does there exist a periodic tiling of the plane of size n1 × n2 over T
where every tile within a distance of k for every other tile is distinct

Proposition 7. The fixed period k-unique tiling problem is NP-hard.

Proof. Following the same arguments as in Proposition 6, the fixed period tiling problem

can be reduced to the fixed period k-unique tiling problem. As the fixed period tiling

problem is known to be NP-hard by reduction from the Halting Problem [5, 11, 64], the

fixed period k-unique tiling problem is NP-hard.
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3.2 Tiling with Overlapping Digitised Rhombuses

This section covers the problem of completely tiling the integer grid Z2 using overlapping

digitised rhombuses. Before the problem can be defined, several concepts must first be

introduced. Informally, a digitised rhombus with radius r can be thought of as a set of

mono-chromatically coloured tiles organised as a rhombus. In this section, we use the

Manhattan distance, formally given two points (x1, y1) and (x2, y2) the distance between

them is given by |x1−x2|+ |y1−y2|. We assume that each tile is coloured from some given

set of colours C. Figure 3.3 provides an example of such a rhombus.

Definition 18. A digitised rhombus of radius r is the mapping from the grid {(x, y) :

x, y ∈ Z, |x|+ |y| ≤ r} to a set of colours C.

Given a rhombus R and position (x, y) ∈ {(x, y) : x, y ∈ Z, |x| + |y| ≤ r}, Ri,j is used to

denote the colour mapped by R to position (i, j), i.e. the colour of the tile at position

(i, j) in the rhombus. See Figure 3.4 for an example. A rhombus is distinctly coloured if

Ri,j 6= Rl,m for every pair of positions (i, j), (l,m) ∈ {(x, y) : (x, y) ∈ Z2, |x| + |y| ≤ r}
where (i, j) 6= (l,m), i.e. if the colour assigned to every distinct position in the rhombus

is unique. An example is of a distinctly coloured digitised rhombus with a radius of 2 is

provided in Figure 3.3.

(1,1)

(-1,-1)

(0,2)

(-2,0)
Figure 3.3: An example of an distinctly coloured 2-radius digitised rhombus (Left), along
with examples of the colours at some given positions (Right).
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In this section, we use a set of rhombuses R analogously to the set of tiles T used in

tiling problems. More precisely, given the integer grid Z2, the assignment of a rhombus R

to the position (x, y) ∈ Z2 is equivalent to colouring every vertex within a radius of r of

(x, y) using R. Given a rhombus R assigned to position (x, y) ∈ Z2, the position (x′, y′) at

a distance of no more than r from (x, y) is coloured Rx′−x,y′−y.

(0,0)(-1,0)(-2,0)

(-1,1) (0,1) (1,1)

(0,2)

(1,0) (2,0)

(-1,-1) (0,-1) (1,-1)

(0,-2)

Figure 3.4: An example of a the co-ordinates for a digitised rhombus. Note thatRi,j denotes
the tile i tiles East and j tiles North of the central tile of R, denoted R0,0. Negative values
of i are used to denote tiles West of the centre and negative values of j are used to denote
tiles South of the centre.

The focus in this work is on overlapping rhombuses. Given a pair of digitised rhombuses

of radius r ∈ N, R and S at positions (x1, y1) and (x2, y2), R overlaps S if the distance

between R and S, denoted D((x1, y1), (x2, y2)), is no more than 2r. The overlap between R

and S are the set of positions that are assigned colours by both R and S. This corresponds

to the set of positions {(a, b) ∈ Z2, D((a, b), (x1, y1)) ≤ r and D((a, b), (x2, y2)) ≤ r}.
Informally, R and S properly overlap when centred at (x1, y1) and (x2, y2) if every position

in the overlap is assigned the same colour by both R and S. See Figure 3.5 for an example.

Definition 19. Let R and S be a pair of r-radius digitised rhombuses centred on positions

(x1, y1) and (x2, y2) respectively. Rhombuses R and S properly overlap if and only if

Ri−x1,j−y1 = Si−x2,j−y2 for every position (i, j) ∈ {(a, b) ∈ Z2, D((a, b), (x1, y1)) ≤ r and

D((a, b), (x2, y2)) ≤ r}

Note that any two rhombuses at a distance greater than 2 · r from each other prop-

erly overlap following Definition 19 as the set {(a, b) ∈ Z2, D((a, b), (x1, y1)) ≤ r and
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R S

R S
R

S

X

X

X

X X

Figure 3.5: An example outlining how two rhombuses R and S may properly overlap (left)
and when not (right). Note the in the right example, there are several conflicts where the
colours assigned by R and S do not match.

D((a, b), (x2, y2)) ≤ r} would be empty. An assignment of rhombuses R to the integer

grid Z2 can be thought of as a complete colouring of Z2 using the rhombuses in R as the

colours. Infromally an assignment is valid if and only if a rhombus is centred on every

vertex in Z2 and every pair of rhombuses properly overlap.

Definition 20. An assignment A of rhombuses from the set R to the integer grid Z2 is a

mapping from R to Z2 such that A : x, y ∈ Z 7→ R for every x, y ∈ Z. Let A(x, y) : Z2 7→ R
return the rhombus assigned to position (x, y) ∈ Z2. An assignment A is valid if and only

if for every pair of positions (x1, y1), (x2, y2) ∈ Z2, the rhombus A(x1, y1) properly overlaps

the rhombus A(x2, y2).

Definition 21. An assignment A from R to Z2 is periodic if there exists some pair of

integers a, b ∈ Z such that for every (x, y) ∈ Z2, A(x, y) = A(x mod a, y mod b).
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Problem 10. The all-distinct r-discretised rhombus periodic complete assignment problem.

Input: A set R of r-radius digitised rhombuses

Question: Does there exist a valid periodic assignment of R to Z2?

Lemma 2. The all-distinct r-discretised rhombus periodic complete assignment problem

is undecidable for any r ≥ 1.

Proof. This Lemma follows naturally from the periodic tiling problem with a 1-unique

radius. Let T be a set of tiles. A set of rhombuses R(T ) is constructed through a two step

process. First, the set of colours C(T ) is constructed such that every tile t ∈ T corresponds

directly to the colour ct ∈ C(T ). To construct R(T ), let S be the set of valid tilings with a

1-unique radius of the grid {(x, y) : x, y ∈ Z, |x|+ |y| ≤ 1} using the tiles from T . For every

tiling s ∈ S, a rhombus R is constructed such that Ri,j returns the colour corresponding

to the tile at position (i, j) of s.

Given a valid assignment A from the set of rhombuses R(T ) to Z2, a valid tiling with

a 1-unique radius of T can be derived as follows. For every position (x, y) ∈ Z2, A(x, y) is

replaced with the tiling corresponding to A(x, y)0,0. Note that as A is a valid assignment,

every tile the is directly adjacent to (x, y) must be both unique and form a valid tiling.

Therefore, the corresponding tiling must be a valid tiling with a 1-unique radius. Further

if A is periodic the corresponding tiling T is also be periodic.

In the other direction, let T be a valid tiling with a 1-unique radius. To construct an

assignment A from T , the position (x, y) of T is replaced with the rhombus corresponding

to set of tiles surrounding (x, y). Following the above construction, such a rhombus must

exist in R(T ) for every position (x, y). Further, any two adjacent rhombuses must properly

overlap following the construction. Therefore the corresponding assignment is valid. As

before, if T is periodic then the corresponding assignment A is periodic.

Corollary 2. The fixed period all-distinct r-discretised rhombus periodic complete assign-

ment problem is NP-hard for any r ≥ 1.

Proof. Following the construction used in Lemma 2 and the NP-hardness of Proposition

7, it follows that the fixed period all-distinct r-discretised rhombus periodic complete

assignment problem is NP-hard for any r ≥ 1.
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3.3 Pairwise Energy Minimisation Problem on Zd

With the undecidability of the all-distinct r-discretised rhombus periodic complete as-

signment problem established, the next step is to show how to reduce the all-distinct

r-discretised rhombus periodic complete assignment problem to the pairwise energy min-

imisation problem over C on Zd. In this section the pairwise energy function is assumed

to be a member of the 2-distance common minimal value class, CMV(2). It should be

noted that these results require a potentially infinite amount of colours and size of unit

cell. Despite this, the complexity of energy functions in the real world make the lack of

any bounds on the number of colours still a useful model, particularly for the so-called

“tiling” settings, where it is possible that even a finite number of ion species may be used

to generate an infinite number of blocks in continuous space.

At a high level the reduction from the all-distinct r-discretised rhombus periodic com-

plete assignment problem is done by encoding each rhombus as a colour, then tuning the

parameters of the pairwise energy function so that a valid colouring of the grid corresponds

to a valid assignment of rhombuses.

The main challenge of this encoding comes from the definition of the CMV(2) class. By

the definition of CMV(2), for any energy function in CMV(2) the pairwise energy between

vertices is determined solely by the distance between vertices, colour of each vertex, and

some given set of parameters. This means that given two directly adjacent vertices vi and

vj , coloured ci and cj respectively, the energy between vi and vj is the same irrespective

of whether vj is East,North,West or South of vi. This leads to the primary challenge

of encoding the r-discretised rhombus distinctly coloured periodic complete assignment

problem into the pairwise energy minimisation problem over C on Zd.
For the 1-radius distinctly coloured rhombus assignment problem this constraint proves

to be too much. Consider a pair of rhombuses R1, R2 ∈ R such that R1 may properly

overlap R2 only when placed directly East of R1. Let f(R1, R2, 1) = M , and further, let

f(R,S, 1) ≥M for any other pair of rhombuses R,S ∈ R, (R,S) 6= (R1, R2). As the energy

f(R1, R2, 1) = M , the energy of any pair of adjacent vertices coloured using R1 and R2

must be M , regardless of the orientation between the pair. Therefore a complete colouring

of the grid using just R1 and R2 would have an average energy per vertex of 4 ·M , despite

not corresponding to a valid solution to the all-distinct r-discretised rhombus periodic

complete assignment problem. An example is given is Figure 3.6. As such, a larger radius

is needed to encode into the pairwise energy minimisation problem over C on Zd.
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Figure 3.6: An example of a pair of rhombuses which may overlap each other when directly
adjacent. Note that the colouring using these rhombuses would have an energy of 4m
despite not corresponding to a valid assignment of rhombuses.

Construction. Let R be a set of distinctly coloured rhombuses. For every rhombus

r ∈ R a colour Cr is added to the set of colours C(R). For each pair of colours Ci and

Cj corresponding to the rhombuses i and j respectively, the energy f(Ci, Cj , r) is set as

follows:

1. If i and j properly overlap when i is centred at some position directly adjacent to j

then f(Ci, Cj , 1) = M , and f(Ci, Cj , r) > M for any r > 1.

2. If i and j properly overlap when i is centred at some position diagonally adjacent to

j then f(Ci, Cj ,
√

2) = M , and f(Ci, Cj , r) > M for either r = 1 or r = 2.

3. If i and j properly overlap when i is centred at some position peripherally adjacent

to j then f(Ci, Cj , 2) = M , and f(Ci, Cj , r) > M for r < 2.

4. Otherwise f(ci, Cj , r) > M for any distance r.

Note that by the definition of CMV(2), f(Ci, Cj , r) = 0 for any r > 2 and pair Ci, Cj ∈
C(R). Using this construction, Lemma 3 shows that a valid assignment of R to Z2 can
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be used to construct a valid colouring of Z2 using C(R). Lemma 4 complements Lemma

3 by showing that given such a colouring of Z2, there must exist a valid assignment of

rhombuses to Z2.

Lemma 3. Let A be a valid assignment of the set of distinctly coloured 2-radius rhombuses

R to Z2 with a period of n1×n2. Given such an assignment there exists a periodic colouring

of Z2 using the set of colours C(R) with an average energy per vertex of 12 ·M .

Proof. Let U be a unit cell of dimensions n1 × n2 such that U(x, y) returns the colour

CA(x,y) ∈ C(R). Let (x1, y1) and (x2, y2) be a pair of positions in Z2 at a distance of no more

than 2 apart. Following the above construction, f(CA(x1,y1), CA(x2,y2), D((x1, y1), (x2, y2)))

is set toM providedA(x1, y1) properly overlapsA(x2, y2) at a distance ofD((x1, y1), (x2, y2)).

As A is a valid assignment, every pair of vertices within a distance of 2 must properly over-

lap, hence f(CA(x1,y1), CA(x2,y2), D((x1, y1), (x2, y2))) = M . Therefore, each vertex will

interact with 12 other vertices, giving an average energy per vertex of 12 ·M satisfying the

original statement.

Lemma 4. Let U be a unit cell of dimensions n1 × n2 colouring Z2 with the colour set

C(R) such that the average energy per vertex is 12 ·M . Given such a unit cell there exists

a valid assignment of the set of distinctly coloured 2-radius rhombuses R to Z2.

Proof. Let A be an assignment constructed from U such that A(x, y) returns the rhom-

bus corresponding to U(x, y). To show that A is a valid assignment, let v be some

vertex in Z2, and let vNorth, vSouth, vEast and vWest be the vertices immediately to the

North, South,East and West of v respectively. Further, let Rv be the rhombus as-

signed to v, RNorth be the rhombus assigned to vNorth, RSouth be the rhombus assigned

to vSouth, REast be rhombus assigned to vEast, and RWest be rhombus assigned to vWest

As the interaction energy between v and each of vNorth, vEast, vSouth and vWest in the unit

cell must be M , RNorth, REast, RSouth and RWest must all be rhombuses that may prop-

erly overlap Rv when centred directly adjacent to Rv. Further as the interaction between

vi and vj in the unit cell must be M for every i, j ∈ {East,North,West, South}, the

corresponding rhombuses Ri and Rj must be distinct. Therefore, the set of rhombuses

RNorth, REast, RSouth and RWest must correspond to a set of rhombuses that may mutu-

ally overlap Rv. For any such set of 4 rhombuses to properly overlap, note that the central

tile of each rhombus must be coloured uniquely relative to each other rhombus. Further,

as there are only four possible colours the central tile for each rhombus may have and still
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be directly adjacent to Rv, we may assume without loss of generality that the colour of the

central position Ri corresponds to the colour at position i ∈ {East,North,West, South}
relative to the centre of Rv, i.e. that the central position of REast corresponds to the colour

at position (Rv)(1,0).

Let vNorth−East, vNorth−West, vSouth−West and vSouth−East be the set of vertices diago-

nally adjacent to v. Note that the rhombus RNorth−East must properly overlap both REast

and RWest when placed directly adjacently. The only possible such rhombus is one for

which the central position is coloured with (Rv)(1,1). By repeating this for each diago-

nally adjacent vertex, we see that the set of diagonally vertices must be assigned a set of

rhombuses such that the each overlaps with every other vertex either diagonally or directly

adjacent to v.

Finally, let vEast−East, vNorth−North, vWest−West and vSouth−South be the set of vertices

peripherally adjacent to v such that vEast−East denotes the vertex directly East of vEast.

As the vertex vEast−East is at a distance of 2 from v, the central position of REast−East

must be coloured with one of the four colours that are allowed at a distance of 2 from

the centre of Rv. Further, as vEast−East is at a distance of 1 from vEast, the central

position of REast−East must be coloured with one of the four colours that are allowed at

a distance of 1 from the centre of REast. As every position within each rhombus must

be uniquely coloured, there is only a single possible colour that satisfies both of these

conditions, being the colour (Rv)(2,0). Repeating this argument for each other peripheral

vertex, the peripheral vertices must all be coloured by some rhombus that may properly

overlap with Rv when centred on the same point on the grid.

These same arguments may be extended to every other tile in the overlap between any

pair of rhombuses. Therefore every rhombus within a radius of 2 of v must properly overlap

with Rv. Hence given such a unit cell, a valid periodic assignment of rhombuses from R
may be derived by replacing each colour with the corresponding rhombus.

Theorem 1. The pairwise energy minimisation problem over C on Zd is undecidable for

any pairwise energy function in the 2-distance common minimal value class (CMV(2)).

Proof. Following Lemmas 3 and 4, there exists a valid colouring of Z2 with an average

energy per vertex of 12M of C(R) if and only if there exists a valid assignment of R to

Z2. As the all-distinct r-discretised rhombus periodic complete assignment problem is

undecidable, the pairwise energy minimisation problem over C on Zd is undecidable.
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Corollary 3. The Charge-Neutral pairwise energy minimisation problem over C on Zd is

undecidable for the Buckingham-Coulomb Potential.

Proof. Following the construction used by Theorem 1, the pairwise energy minimisation

problem over C on Zd is undecidable for the Buckingham-Coulomb Potential. Following

Proposition 1, the construction of Buckingham-Coulomb such that it fits into the class of

CMV(2) allows two directly adjacent vertices to have an energy of −1 if and only if they

have opposing charges. Therefore, the construction used by Theorem 1 for the version of

the Buckingham-Coulomb potential presented in Proposition 1 also admits a charge neutral

unit cell. This may further be extended to include an additional colour c0 to represent

empty space such that the interaction between c0 and any other colour in C is 0. Note that

as the construction above requires every position to be coloured with a vertex having an

interaction of −1 with every neighbour, there can be no position coloured c0.



Chapter 4

Hardness of Crystal Structure

Prediction

This chapter considers the two different abstractions of csp presented in Section 2.1.

Section 4.1 provides hardness results for the fixed period pairwise energy minimisation

problem. This focuses on showing NP-hardness for the charge neutral case for 1 or more

dimensions, as well providing a parameterised algorithm for the one dimensional case,

parameterised by the cut off distance. Section 4.2 provides hardness results for the deletion

based approach. This section shows NP-hardness for the deletion based problems presented

in Section 2.1.4. Table 4.1 provides a summary of the main results presented in this chapter.

4.1 Pairwise Energy Minimisation for the Fixed-Period Grid

Colouring Problem

In this section we analyse the complexity of the fixed period pairwise energy minimisation

problem and the charge-neutral fixed period pairwise energy minimisation problem for the

one dimensional case. This section is split into two parts. Section 4.1.1 shows that the one

dimensional case of the charge-neutral fixed period pairwise energy minimisation problem

is NP-hard to both solve and approximate within any positive factor. Section 4.1.2 provides

a parameterised algorithm for the fixed period pairwise energy minimisation problem in

1D, parameterised by the cut-off distance of the energy function.

58
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Theorem Summary Setting

Theorem 2 NP-hardness to solve
within any positive
factor by reduction
from the independent
set problem.

The charge-neutral fixed period pairwise en-
ergy minimisation problem for the Buckingham-
Coulomb potential.

Theorem 3 An O(n3 ·q3(d+1)) time
algorithm where q is
the number of colours
and d the cutoff dis-
tance.

The 1 dimensional fixed period pairwise energy
minimisation problem for any energy function
with a cut off distance of d (including the class
CMV (d)) and unit cell of size n.

Theorem 4 NP-Completeness by
reduction from the
clique problem.

k-charge removal, k≥-charge removal, and
minimal-k≥-charge removal, under any en-
ergy function in CF , vertices of charge ±c for a
given c and an unbounded number of ion species.

Theorem 5 NP-Completeness by
extension of Theorem
4.

k-charge removal, k≥-charge removal, and
minimal-k≥-charge removal, under any en-
ergy function in CF , any bounded set of charges
and an unbounded number of ion species.

Theorem 6 Non-approximability
in Polynomial time for
any factor of n1−ε, for
ε > 0

k≥-charge removal, for any energy function in
CF .

Theorem 7 Reduction to max-
weight-k-clique.

k-charge removal or minimal-k≥-charge re-
moval under any computable energy function,
vertices of charge ±c for a given c, and a un-
bounded number of ion species.

Theorem 8 NP-Completeness by
reduction from inde-
pendent set on penny
graphs.

k-charge removal, k≥-charge removal,
and minimal-k≥-charge removal, under the
Buckingham-Coulomb potential energy function,
vertices of charge ±1, and two species of ion.

Theorem 9 NP-Completeness by
reduction from the
knapsack problem.

Minimal-k≥-Charge Removal and k≥-Charge Re-
moval, under the Coulomb potential energy func-
tion, unbounded number of vertex weights and un-
bounded number of ion species.

Table 4.1: Summary of the main results from this chapter.
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4.1.1 Buckingham-Coulomb Potential with Charge Neutrality

In this section we consider only the Buckingham-Coulomb potential in 1D, showing that

the charge-neutral fixed period pairwise energy minimisation problem is NP hard both to

solve and to approximate within any positive factor. It should be noted that NP-hardness

can be shown for any function in CMV(2) for any grid of at least 2 dimensions by reduction

from the fixed period k-unique tiling problem by way of Corollary 3, however this reduction

does not provide any hardness on the problem of approximation.

The reduction presented in this section uses the k-independent set problem to show

that it is NP-hard to approximate the optimal solution to the charge neutral fixed period

pairwise energy minimisation problem for a set of n ion species within any factor greater

than 0. The k-independent set problem asks, for a graph G = (E, V ), if there exists set S

of k vertices from V such that (i, j) /∈ E for every i, j ∈ S. At a high level, the reduction

works by representing each vertex with an ion. The energy between ions is set to have a

high penalty cost penalty between ions representing adjacent vertices, and a negative cost

between other ions.

Charge-Neutral Fixed Period Pairwise Energy Minimisation Problem Instance

Construction. Given an instance of the k-independent set problem for the graph G =

(E, V ), a positive ion species Pi is created for every vertex i ∈ V with a charge of +1.

Additionally, a negative ion species Nk with a charge of −k is created. In this setting, the

unit cell is fixed to a size of k+1 with the grid Z. This effectively corresponds to a word of

k+ 1 symbols. Further for the cell to be charge balanced it must either be empty, or have

a single ion of the species Nk, and k positive ions. Due to the translational symmetry of

this setting, it is assumed that the ion Nk is located at the centre of the unit cell.

In general, given two ions i and j where i 6= j, the energy between Pi and Pj is set to

either be 0 if (i, j) /∈ E, or greater than some penalty value c > 0 if (i, j) ∈ E or i = j.

Further the energy between Pi and Nk is set to no more than some negative value g. The

energy between each pair of ions is set as follows.

Between Pi and Nk. To ensure that the energy between Pi and Nk is no more than g, let

the cutoff distance be
⌈
k+1

2

⌉
. Using this distance, let Ai,Nk = 0. This gives the interaction

energy between Pi and Nk as −Ci,Nk
r6
− 1

r . Therefore by setting Ci,Nk to g · 8(k + 1)3, the

interaction energy at any distance less than or equal to
√

2(k + 1) is no more than g. Note

that the cutoff distance of
⌈
k+1

2

⌉
ensures that Nk interacts with between 1 and 4 ions in



Chapter 4. Hardness of Crystal Structure Prediction 61

the neighbouring unit cells.

Between Pi and Pj where (i, j) ∈ E or i = j. Given two positive ions representing

adjacent vertices in G, the goal is to set the energy to have a large penalty at any distance

within the unit cell. To this end, let the cutoff distance between Pi and Pj be dij =

d
√

2k + 1e. Note that this cutoff distance ensures that Pi interacts with Pj at any position

with the unit cell. By setting Aij = c,Bij = 0 and Cij = 0, the energy between Pi and Pj

at a distance of rij is c+ 1
rij

.

Between Pi and Pj where (i, j) /∈ E and i 6= j. Given two positive ions representing

non-adjacent vertices, the pairwise interaction energy is set to be 0 at any distance by either

setting the cut-off distance to 0, ignoring the interaction, or setting the cutoff distance to

1 and setting Aij = Bij = 0, and Cij = 1 in order to counteract the Coulomb potential.

Between Nk and Nk. As in the previous case, given two negative ions the pairwise

interaction energy is set to 0.

Theorem 2. The charge-neutral fixed period pairwise energy minimisation problem can

not be approximated within any factor greater than 0 in polynomial time unless P = NP .

Proof. Using the construction above, observe that the unit cell with minimal energy must

either have k positive ions and 1 negative ions, or be empty. Consider a k-independent set

instance such that there exists an independent set of size k in the graph G. As a simple

lower bound on the interaction energy, let each of the k positive ions be at a distance of

1 from Nk. Note that at this distance each positive ion only interacts with Nk once. In

this case the total energy of the unit cell is k · g · 8(k+ 1)3 ≈ g · 8(k+ 1)4 with the average

energy per ion being g · 8(k + 1)3. If there is no such independent set, there must be at

least one pairwise interaction with an energy of at least c, setting the average interaction

energy to g · 8(k + 1)3 + 2C
k+1 . Hence by setting c ≥ | − g · 8 · (k + 1)4|, any approximation

algorithm that can solve the charge-neutral fixed period pairwise energy minimisation

problem within any factor greater than 0 would also be able to solve the k-independent set

problem. Therefore the charge-neutral fixed period pairwise energy minimisation problem

can not be approximated within a factor greater than 0 within polynomial time unless

P = NP .
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4.1.2 A Parameterised Algorithm for the One Dimensional Fixed Period

Pairwise Energy Minimisation Problem

Following the hardness results for the charge balanced one dimensional case of the fixed

period pairwise energy minimisation problem, the obvious question to ask is if there exists

any parameterised algorithm for solving the fixed period pairwise energy minimisation

problem on Z. In this section we answer this question in the affirmative with an algorithm

that can solve the fixed period pairwise energy minimisation problem in O(n3 ·q3·d) where d

is the cut off distance, the distance for which f(c1, c2, r, θ) = 0 for any r ≥ d. For notation,

the d-cut off distance property, CF(d), is introduced.

Definition 22. A function f(c1, c2, r, θ) : c1, c2 ∈ C, r ∈ R, θ ∈ Rm 7→ R has the d-

distance cut-off property CF(d) property if f(c1, c2, r, θ) = 0 for every r ≥ d.

Note that CF(d) is a generalisation of CMV(d), with any function with the CMV(d)

property also having the CF(d) property. As such the functions provided in this section

can be applied to the any function in CMV(d), such as the Buckingham-Coulomb or Ising

models. In particular, this may be useful to “tiling” approaches to solving csp such as

MC-EMMA where the problem is reduced to that of ordering blocks in a one dimensional

setting.

High Level Overview: At a high level, the idea is to construct a directed acyclic graph

containing qd+1 source and sink nodes corresponding to every possible structure of length

d+ 1. This graph is designed such that the lowest weight path from the source to the sink

corresponds to the lowest energy colouring for the fixed period pairwise energy minimisation

problem instance. This is done by constructing a set of qd+1 vectors corresponding to

every possible way of colouring d consecutive vertices from a set of q colours on the 1-

dimensional integer grid. To make a graph, a set of n-layers is constructed, with each

layer containing a vertex for each vector. Each vertex is connected only to vertices in the

next layer, with the constraint that the vertex v in layer i corresponding to the vector

(l1, l2, . . . , ld+1) is connected only to vertices in layer i+ 1 corresponding to vectors of the

form (l2, l3, . . . , ld+1, x), for some colour x ∈ C.
Construction: Given an instance of the fixed period pairwise energy minimisation prob-

lem for the one dimensional grid with dimension n, and set of colours C, a graph G is

constructed. Let V(d, C) = {(x1, x2, . . . , xd+1)|x1, x2, . . . , xd+1 ∈ C}. For notation given

l ∈ V(d, C), li is used to denote the colour of the ith position of l, i.e. given l = (1, 2, 1, 2),
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l2 = 2 while l3 = 1. For every i ∈ [n] and l ∈ V(d, C) the vertex vi,l is constructed and

added to the set V of vertices. Given a pair vertices vi,l, vj,k ∈ V , the edge vi,l, vj,k is added

to the set of edges E if and only if i+ 1 = j and l2, l3, . . . , ld+1 = k1, k2, . . . , kd. The weight

of (vi,l, vj,k), denoted w(vi,l, vj,k), is equal to
d∑
i=1

f(k1, ki+1, i, θ). This means that each edge

(vi,l, vj,k) corresponds to the pairwise interaction energy between k1 and each subsequent

vertex in k. In order to account for the energy from the first vector, an additional set

of qd+1 vertices labelled vl for every l ∈ V(d, C). The vertex vl has only a single edge

connecting it to v1,l, weighted as before. Hence by constructing a path of length n starting

at some vertex vl and ending at the vertex vn,l the weight of the path with correspond to

the total pairwise energy of the corresponding unit cell. Thus by finding such a path with

minimum energy the solution to the fixed period pairwise energy minimisation problem

may be found. Using the above construction, the solution to the fixed period pairwise

energy minimisation problem instance is found by determining the shortest path from each

vertex of the form vl to the vertex vn,l for every l ∈ V(d, C).

Theorem 3. There exists an algorithm to solve the fixed period pairwise energy minimi-

sation problem in O(n3 · q3·(d+1)) time for any function with the CF(d) property.

Proof. Using the above construction, the solution to the corresponding fixed period pair-

wise energy minimisation problem instance can be found by using all simple all pairs

shortest path algorithm. Using a classic algorithm for finding the shortest path be-

tween all pairs such as the Floyd–Warshall algorithm, the paths may be found in O(|V |3)

time. Note that the number of vertices equals (n + 1) · qd+1 giving a total complexity of

O((n+ 1)3 · q3·(d+1)) ≈ O(n3 · q3·(d+1)).

4.2 Energy Minimisation of Structures under the Deletion

Operation

4.2.1 NP-Hardness for an Unbounded Number of Ion Species

This subsection focuses on the class of potential functions CF . It is assumed that the energy

function for all cases is an arbitrary function in CF for which the parameters required by the

ions to result in the energy from their pairwise interaction to be any arbitrary a are known.

NP-completeness for k-charge removal as well as for the generalisations to minimal-

k≥-charge removal and k≥-charge removal is shown when there are bounds on value
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of the charges (either quantity of charges, or the maximum value). Further, these problems

are shown to hard to approximate within a factor of n1−ε for any ε ≥ 0 in polynomial time

for bounded values of charges, where n is the number of ions in the unit cell. It may

be noted that in the case the charges are not bounded, minimal-k≥-charge removal

remains NP-hard, however as it is not in NP it is not NP-complete. Along with the

hardness results we provide a polynomial time reduction from both k-charge removal

and minimal-k≥-charge removal to max-weight-k-clique, under the restriction that all

vertices have a charges of ±c for some non zero c ∈ Z.

Theorem 4. k-charge removal, minimal-k≥-charge removal and k≥-charge re-

moval are NP-Complete for any energy function in F for vertices with charges of ±c, for

any natural number c.

Proof. k-charge removal and k≥-charge removal are in NP by Proposition 4, and

as the vertex charges are bounded, minimal-k≥-charge removal is in NP by Lemma

1. Hardness is established via a reduction from the k-Clique problem. This is shown

by reduction to k-charge removal, noting that any satisfying solution to k-charge

removal also satisfies k≥-charge removal and minimal-k≥-charge removal.

In the k-Clique problem, henceforth k-clique, the input is a graph, G, and a natural

number, k. The goal is to find a clique of size k in G, or report that no such clique exists.

A clique is a set of vertices in a graph such that all vertices in the set are adjacent to each

other.

Given an instance of k-clique, I = (G, k) = ((E, V ), k), where n = |V |, an instance,

I ′, of k-charge removal is constructed as follows. A unit cell of arbitrary size is chosen.

Within this cell 2n unique positions are chosen at arbitrary points in the unit cell. In the

first n positive ions are placed and in the last n negative ions are placed. Each ion has its

own unique specie. Every vertex vi ∈ V corresponds to two ions, i+ and i− with charges

c and −c respectively. For two ions i and j associated with vi and vj respectively the

parameters θ(i, j) are set so as to satisfy the following:

f(θ(i, j), D(i, j)) =

−1 vi = vj or (vi, vj) ∈ E

P otherwise.

Where P ∈ R is some arbitrarily high penalty value that may be treated as effectively

being equal to ∞ for any practical purpose. The definition of CF guarantees that there
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exists parameters satisfying these conditions irrespective of the positions, and thus the

distance rij , of the ions. Note that there are k(2k − 1) edges in a clique of size 2k. Let

g = k(2k − 1) and let k′ = n− k. To remove k′ positive and k′ negative ions c · k′ vertices

must be removed.

The corresponding crystal graph G′ = (V ′, E′) is constructed as described in the pre-

liminaries. Let the vertices v+
i , v

−
i ∈ V ′ represent the ions corresponding to vi ∈ V . v±i is

used to denote either v+
i or v−i , where the charge of the vertex doesn’t matter i.e. we are

only concerned with the vertex in G that v±i corresponds to. From the definition of the

energy function, wt(v±i , v
±
j ) = −1 if i = j or (vi, vj) ∈ E, and P otherwise.

We claim that I is satisfiable if and only if I ′ is satisfiable. First consider the case that

I is satisfiable. In this case c ·k′ vertices may be removed from I ′, leaving only the vertices

corresponding to the clique in I, denoted A. As all vertices in A correspond to adjacent

vertices in G, the energy is −1 multiplied by the number of edges, giving a total energy

of −k(2k − 1), satisfying the k-charge removal instance. Conversely if there does not

exist a clique of size k in G then any subset of charges A ⊆ V ′ of cardinality k clearly must

contain at least one edge with a weight of P , making I unsatisfiable.

This may be extended to other graph problems relatively easily. One example of this would

be the max-weight k-clique problem. The max-weight k-clique problem takes as

input a weighted graph G, a natural number k, and a goal value g. The problem is to

report if a clique of size k exists such that the sum of the weights of the edges is at least g.

Using the above construction, a crystal graph G′ may be created from G. From this the

weights on the edges may be adjust as follows:

f(θ(i, j), D(i, j)) =


−wt(vi, vj) vi 6= vj and (vi, vj) ∈ E

−c vi = vj

P otherwise.

Where P ∈ R is some arbitrary large penalty value, wt(vi, vj) denotes the energy between

vertices vi and vj in G and c is some constant such that @(vi, vj) ∈ E where wt(vi, vj) ≥ c.
The goal value for the k-charge removal instance is chosen as−(k·c+v). The correctness

of this reduction follows from the arguments in Theorem 4.

Theorem 5. k-charge removal remains NP-hard for a given set of allowed charges

with unique magnitude and an energy function within CF .
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Proof. The construction of Theorem 4 may be extended to the case the set of vertices is

limited to any set of allowed charges. Two charges are chosen from this set, c and d where

|c| > |d| and c · d < 0 such that the difference between the absolute value of the charges,

|c|− |d|, is minimised. The same steps as in Theorem 4 are followed for the construction to

get an initial crystal graph G = (V,E) and k′. Note that I has a deficiency of n(|c| − |d|),
where n is the number of ions in the initial construction, meaning that some set of vertices

must be added to make the cell neutral. To handle the deficiency two sets of dummy

vertices with charges of c and d are created.

The first set is to deal with the deficiency that would be left from a clique of size k.

To construct these, a natural number t is chosen such that there exists a pair of natural

numbers tc and td where tc|c| = t and td|d| = k(|c| − |d|) + t. Using these, tc vertices with

a charge of c and td vertices with a charge of c and td with a weight of d are added. From

the definition of CF , the energy between them and all ions in G and between each other

is set as 0.

The second set of dummy vertices are to counteract the overall deficiency in the unit

cell. A natural number u is chosen such that there exists a pair of natural numbers uc and

ud, where u = |c|(uc + tc) and u+ n(|c| − |d|) = |d|(ud + td). uc vertices with a charge of c

and ud vertices with a charge of d are added. The potential energy between between them

and all other vertices, including the set of previously added dummy vertices, is P .

To ensure that the optimal set of ions to be left with is a clique of size k as well as all of

the dummy vertices added in the first step, the following is done. The goal energy remains

the same as from Theorem 4. Observe that the only way to achieve this is to leave vertices

corresponding to a clique of size at least k. As there are c(n+ uc + tc) vertices for one set,

and the goal is to be left with c(k + tc), a value k′ is chosen to remove as c(n + uc − k).

In the case that exactly k′-charges are removed, either the dummy vertices or some other

vertices corresponding to a clique of size greater than k, ensuring the set remains neutral

is left. In the at-least-k′ case, some dummy vertices may also be removed provided the cell

remains neutral.

From the arguments in Theorem 4 this is sufficient to ensure the new instance is satisfi-

able if and only if the original k-clique instance is. Therefore these problems are NP-hard,

even in the case that there are distinct charges c and d, |c| 6= |d|.

Theorem 6. For any ε > 0, k≥-charge removal for k = 0 cannot be approximated

within a factor of n1−ε, where n is the number of ions, in polynomial time unless P = NP .
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Proof. This result follows from the results of H̊astad [46], who showed an approximation

bound of n1−ε for Max-Clique. Using the reductions from Theorems 4 and 5 let the

minimum energy after a removal of at least 0 vertices be e. Note that this corresponds to the

lowest potential energy of the instance. From the reductions, it is clear the e = −k, where k

is the size of the clique, or P if the remaining ions do not correspond to a clique. Note that

as P may be arbitrarily large, given an approximation algorithm for any instance of k≥-

charge removal with k = 0 an approximation algorithm for Max-Clique may be derived

that approximates the instance of Max-Clique to the same factor as it approximates the k≥-

charge removal instance. Therefore any bounds on the approximation of Max-Clique

must also apply to this problem, hence k≥-charge removal can not be approximated

within a factor of n1−ε for any ε > 0 within polynomial time unless P = NP .

While there are simple reductions to other NP-Complete problems such as Integer Pro-

gramming, embedding this problem into many classical problems is made difficult due to

the problem of maintaining the neutrality of the unit cell. To this end, Theorem 7 provides

a polynomial time reduction to show how a restricted version of k-charge removal may

be embedded into max-weight k-clique.

Theorem 7. k-charge removal can be reduced to max-weight k-clique in polynomial

time, under the restriction that vertices are limited to charges of ±c and the energy function

is computable within polynomial time.

Proof. Note that, given charges of ±c, a valid solution to minimal-k≥-charge removal is

either valid for k-charge removal, or there is no valid solutions to k-charge removal.

Taking as input an instance of minimal-k≥-charge removal with charges of ±c with

the corresponding crystal graph, it is claimed that this instance may be represented as an

instance of the weighted generalisation of k-clique.

In weighted k-clique, denoted weighted-k-clique, the input is a weighted graph, a

goal value v, and a natural number k. An instance of weighted-k-clique is satisfiable

if and only if there exist a clique of size k such the sums of the weight of the edges in the

clique is at least v.

Given an instance of minimal-k≥-charge removal I = (G, k) = ((V,E), k), an

instance I ′ of weighted-k-clique is created as follows. A value k′ is chosen as |V
+|−k
c

rounded down to the nearest natural number. The reason for this choice is to ensure that
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a+ b+ c+

d− e− f−

a, d a, e a, f

b, d

c, d

b, e

c, e

b, f

c, f

Figure 4.1: Example of the construction from k≥-charge removal to clique. Note that
vertices a, b, and c have a positive weight, while d, e, and f have a negative weight. Also
note that any clique of size 3 corresponds to the original graph.

the optimal clique has size equal to the number of vertices left after removing k charges.

Note that if (|V +|−k)( mod c) 6≡ 0, then there is no valid solution to k-charge removal,

however there may still be some valid solution to minimal-k≥-charge removal. A new

graph G′ = (V ′, E′) is created which is initially empty. For each pair of vertices with

different charges a new associated vertex in V ′ is created. An edge is created between

each new vertex if and only if the corresponding charges are all unique, i.e. given the

set of charges V + = (vi, vj), and v− = (vk, vl) an edge would be placed between the

new vertex representing (vi, vk) and the one representing (vj , vl), but not from either to

the vertex representing (vi, vl). Give two connected vertices corresponding to charges

(vi, vk) and (vj , vl) the edged is assigned a value of −(f(θ(i, j), D(i, j)) + f(θ(i, l), D(i, l))

+ f(θ(j, k), D(j, k)) + f(θ(k, l), D(k, l)) + f(θ(i,j),D(i,j))+f(θ(j,l),D(j,l))
k′−1 ) to the edge between

them. The intuition behind this is for the edge to maintain the weights of the edges in

G. f(θ(i,k),D(i,k))+f(θ(j,l),D(j,l))
k′−1 is added to this so that within a clique of size k′, the edge

between the two vertices is fully represented. An example of this construction is shown in

Figure 4.1, omitting weights for legibility.

It is now be claimed that any clique of size m corresponds to a neutrally weighted

subset A ⊆ V , where

∣∣∣∣∣ ∑vi∈A+

wt(vi)

∣∣∣∣∣ = mc. This is shown by noting that vertices are only

connected if they do not represent a common vertex. As such a clique of size m must

contain m unique positively weighted and m unique negatively charged vertices for the

corresponding vertices to be connected as a clique. Therefore by selecting any clique of
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size k′ in this graph, there is a valid structure left with exactly k′ unique positively weighted

and k′ unique negatively charged vertices. From the definition of k′ this corresponds to an

subgraph of G after a minimal removal of k.

It may now be claimed that a maximum weight clique of size k′ corresponds to the

best subset of ions after a k Charge Removal. Note that given a clique with total weight

w corresponds to a set of ions with total energy −w. It is a straightforward extension

to see that a maximum weight clique corresponds to a minimum energy subset of ions.

This is seen by noting that by choosing k′ as the size of the clique, the corresponding

arrangement A ⊆ V has

∣∣∣∣∣ ∑vi∈A+

wt(vi)

∣∣∣∣∣ = c · k′. From the definition of k′, this requires∣∣∣∣∣ ∑vi∈A+

wt(vi)

∣∣∣∣∣ ≤
∣∣∣∣∣ ∑vi∈V +

wt(vi)

∣∣∣∣∣−k, which satisfies the requirements for a k Charge Removal.

Conversely the definition of k′ ensures that the removal must be minimal. Therefore

the optimal solution to the weighted-k-clique instance must correspond to an optimal

solution to the minimal-k≥-charge removalk-charge removal instance. Similarly

any valid solution to the weighted-k-clique instance corresponds to some solution to

the minimal-k≥-charge removal instance.

4.2.2 NP-Hardness for 2-Species with Buckingham-Coulomb Potential

In Section 4.2.1 NP-hardness was shown for the case that there was an unbounded number

of species, and NP-completeness in the case that there is a bounded number of charge

values. This is strengthened by considering instances with only two unique species. Only

the Buckingham-Coulomb potential function with charges of ±1 is considered in this sec-

tion. All three problems are again considered, noting that for charges of ±1 k-charge

removal is equivalent to minimal-k≥-charge removal. NP-hardness is shown by a

reduction from Independent Set problem denoted independent-set, on penny graphs -

adapting it to the Euclidean settings of a crystal graph of ions within a unit cell. The

Independent Set problem takes as input a graph, G, and a natural number k. The goal is

to find an independent set, i.e. a set of vertices such that no two are adjacent, of size k in

G, or report that one does not exist. A Penny graph is a graph where each vertex may be

drawn as a unit circle such that no two circles overlap, and an edge between two vertices

exists if and only if the corresponding circles are adjacent to each other, i.e. they intersect

at only a single point. Finding an independent set on this class of graphs was shown to
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be NP-hard by Cerioli et al. [18]. The NP-hardness result for this problem is shown by

a reduction from max-degree 3 planar vertex cover, shown to be NP-Complete by

Garey and Johnson [35].

Construction of the k-charge removal Instance: Let I = (G, k) be an instance

of independent-set where G = (V,E) is a planar graph with a maximum degree of 3

and k ∈ N is the size of the target independent set. An instance of k-charge removal

is created as follows. Using Theorem 1.2 from Cerioli et al. create a new penny graph

realisation, G′, and a new natural number k. The class of graphs created by this process

is denoted as the long orthogonal penny graphs. The radius of each circle for G′ is chosen

as n
2 .

A region of space in R3 with a height of at least 1 and a width and length allowing G′

to be drawn is created. This space is the parallelepiped for the unit cell. In this space,

two copies of G′ are drawn such that one is directly above the other at a distance of 1. For

every circle in G′ two ions are created and placed at the centre of the circles, one in the

lower copy of G′ and the other in the higher copy. Each ion is labelled with the vertex from

G′ it corresponds to. In this context pair refers to the two ions in the new crystal graph

CG, labelled with the same vertex from G′. Two pairs are neighbouring if they represent

vertices that are adjacent in G′. The lower ions are assigned the positive specie and the

upper ions the negative. An example of this arrangement is provided in Figure 4.2. Note

that the minimum distance between two pairs in the same plane that are non-adjacent for

circles with a radius of n
2 is
√

2n, as shown in Figure 4.3.

The positive and negative species are assigned charges of +1 and −1 respectively. In

general there are 3 sets of parameters to choose determining the interaction between two

positive ions, two negative ions, and one positive and one negative ion. For simplicity,

the parameters determining the interaction between two positive ions and the parameters

determining the interaction between two negative ions are treated as being the same.

Informally, this means the energy between two negative ions at a distance of r from each

other is the same as the energy between two positive ions at a distance of r. For brevity, 1

and 2 are used to denote the positive and negative specie respectively. With this notation,

the parameters that may be set are A11, B11, C11, A12, B12, and C12.

An independent set is said to be left if the ions left after a removal of k′ charges have

labels corresponding to an independent set in G′. Let k′ = n−k, be the number of charges

that are required to be removed to be left with an independent set of size k. Note that
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as the charge of each ion has a magnitude of one, a removal of k′ can only be achieved by

removing k′ positive and k′ negative ions. The goal energy for the construction is set as

g = (k − 1)( A12

eB12
− C12 − 1). To simplify the equations regarding the interaction between

planes, r̂ is used to denote
√
r2 + 1. To ensure that an independent set is left of size k if

and only if one exists, the following three inequalities must be satisfied:

A11

eB11n
− C11

n6
+

1

n
+

A12

eB12n̂
− C12

n̂6
− 1

n̂
≥
∣∣∣∣ A12

eB12
− C12 − 1

∣∣∣∣ (4.1)

n2

∣∣∣∣ A11

eB11r
− C11

r6
+

1

r
+

A12

eB12r̂
− C12

r̂6
− 1

r̂

∣∣∣∣ ≤ ∣∣∣∣ A12

eB12
− C12 − 1

∣∣∣∣ , r ≥
√

2n (4.2)

A11

eB11r
− C11

r6
+

1

r
+

A12

eB12r̂
− C12

r̂6
− 1

r̂
> 0, r ≥

√
2n (4.3)

At a high level, these inequalities are used as follows. Inequality 4.1 ensures that the

positive interaction between some ion i and the adjacent pair is greater than the interaction

between i and the other ion j in the same pair. This ensures that the cost of keeping two

adjacent pairs is greater than the negative energy gained by keeping it. Inequality 4.2

ensures that the total positive interaction energy between some ion i and every ion further

than n is no more than the negative energy given by keeping i with the other ion in the

pair. This ensures that, given an pair of ions representing a vertex that is not adjacent to

any other pairs, it is better to keep the pair in the structure rather than to remove the pair.

Finally Inequality 4.3 is used to ensure that the interaction between two ions on the same

plane leads to a positive energy penalty no matter the distance. This is used to bound the

total energy from above.

The following Lemmas use these inequalities as follows. Lemma 5 show that there

exists some parameters for the Buckingham-Coulomb potential satisfying the inequalities,

allowing them to be used as a tool when considering the subsequent Lemmas. Lemmas

6 and 7 assume that it is preferable to choose k′ pairs over any other set of charges in

the arrangement. Lemma 6 shows that the optimal removal results in an independent

set. Lemma 7 provides an upper bound on the interaction energy for this setting. Finally

Lemma 8 proves that it is always preferable to choose k′ pairs over any other set of charges

in the arrangement.

Lemma 5. There exists, for any structure created from a long orthogonal penny graph,

some parameters for the Buckingham-Coulomb potential such that Inequalities (4.1, 4.2)
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and (4.3) are satisfied.

Proof. Values are chosen for A12, B12 and C12 such that the energy for any pair of ions of

opposite vertex at a distance of 1 is −1. This is achieved by choosing a value of 1
2n2 for

A12, 0 for B12, and 1
2n2 for C12. This simplifies the energy equation to:

UBC(r) =
A11

eB11r
− C11

r6
+

1

r
+

1

2n2
− 1

2n2r̂6
− 1

r̂
.

To satisfy Inequality 4.1, UBC(n) > 1. This may be satisfied by choosing values for A11,

B11, and C11 such that A11

eB11n
− C11

n6 = 1, noting that 1
2n2 − 1

2n2r̂6
+ 1

r −
1
r̂ > 0 for all positive

distances greater than 1. This is satisfied by solving the equation A11

eB11n
− C11

n6 = 1, choosing

A11 = C11eB11n

n6 + eB11n.

Inequality (4.2) requires that at a distance of at least
√

2n the total energy is no

more than 1
n2 . This is satisfied at a distance of

√
2n by ensuring that the A11

eB11
√
2n
−

C11
8n6 = 0, which is satisfied after substituting in the appropriate value for A11 with C11 =

eB11n

eB11
√
2n

(
1

(
√

2n)6
− eB11n

n6eB11
√
2n

) , which simplifies to 8n6

e(
√
2−1)B11·n−8

. Finally, consider the value

of B11. Note that the value of both A11 and C11 depend greatly on B11, with a small

increase in B11 leading to a very rapid increase in the value of A11 and a rapid decrease

in C11. Similarly, the value of the energy given by A11

eB11r
− C11

r6
rapidly decreases initially

before converging at approximately 0, noting that the first derivative with respect to r of

this equation for a given n is −B11
A11

eB11r
+ 6C11

r7
. As such by choosing a suitably large B11

Inequality (4.2) is easily satisfied, one natural choice for this would be B11 = n.

Note that both A11

eB11r
and C11

r6
strictly decrease, therefore if

∣∣∣ A11

eB11r

∣∣∣ ≤ 1
2n2 − 1

r + 1
r̂ and∣∣C11

r6

∣∣ ≤ 1
r −

1
r̂ both Inequalities (4.2) and (4.3) are satisfied. From the value of B11 this

becomes n6

e(
√
2−1)n2−8

, which is positive and less than 1
n2 for any n ≥ 6. Note that 1

r −
1
r̂ ≥

1
r6

for any r ≥ 1.3, hence it is clear that C11
r6
≤ 1

r−
1
r̂ for n ≥ 6. Considering A11

eB11r
at a distance

of
√

2n, the equation becomes A11

en2
√
2

= C11

n6en2
√
2

+ 1

e(
√
2−1)n2

, from the previous arguments it

follows that this is considerably less than ≤ 1
2n2 − 1

r + 1
r̂ for n ≥ 6.

Note that due to the constant 1
2n2 term there is a positive value for any distance greater

than
√

2n, satisfying Inequality (4.3).

Lemma 6. Inequalities (4.1) and (4.2) are sufficient to ensure that an independent set is

left if one exists in the original independent-set instance.
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Proof. Inequality (4.1) ensures that if there are two pairs corresponding to adjacent ver-

tices, the total energy always decreases by removing one of the pairs. Inequality (4.2)

complements (4.1) by ensuring that given a pair corresponding to a vertex with no adja-

cent neighbours, the total energy would increase by removing it. This holds even in the

case that all other pairs are at a distance of
√

2n. Inequalities (4.1) and (4.2) combined

means that the global minimum total energy for any subset is the maximum independent

set. Note that the total energy decreases with the cardinality of the given independent

set.

Lemma 7. Given k pairs, the energy is less than (k− 1)( A12

eB12
−C12− 1) if and only if the

pairs correspond to an independent set of size k, for A12

eB12
− C12 − 1 < 0.

Proof. Given k pairs, the energy between the ions in each pair is A12

eB12
−C12−1, for a total

of k( A12

eB12
−C12− 1). Inequality (4.2) ensures that the maximum energy gained from pairs

of ions corresponding to non-adjacent circles is at most |(( A12

eB12
− C12 − 1))|. Inequality

(4.3) ensures that having vertices on the same plane leads to a slight positive charge. From

this it follows that the maximum energy a set of ions corresponding to an independent set

is (k − 1)( A12

eB12
− C12 − 1). Conversely, from Inequality (4.1) it is known that if there is a

pair of adjacent circles the total energy must be greater than (k − 1)( A12

eB12
− C12 − 1).

Note that for k≥-charge removal that if greater than k′ pairs were removed this

energy could not be achieved as the minimum energy would be (k − 1)( A12

eB12
− C12 − 1)

for the interaction within pairs. As there is a positive interaction between pairs, the total

energy must be slightly greater than this for any k > 1. Therefore the total energy is less

than (k − 1)( A12

eB12
− C12 − 1) if and only if there is an independent set of size k left. Note

that under the choice of variables from Lemma 5, the upper bound is −(k − 1).

Lemma 8. When removing k′ charges from the construction from a long orthogonal penny

graph, it is always preferable to remove pairs provided that Inequalities (4.1-4.3) hold.

Proof. Assume that this statement is false, there must be some assignment, where it is

preferable to remove some set of at least two vertices, v+
i and v−j , that do not form a

pair with any ions that have be removed. Assume that there are t positive and t negative

vertices in the graph. If instead v−j was left in, while v+
i was removed, the remaining energy

would change by at least −1 + t

(
A11

eB11
√

2n
− C11

(
√

2n)6
+ 1√

2n
+ A12

eB12
√̂
2n
− C12
√̂

2n
6 − 1

√̂
2n

)
. From

the arguments in Lemma 6 and the construction in Lemma 5 this leads to a decrease in
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total energy, making it preferable and therefore contradicting the assumption. Note that

given a positively charged vertex of the maximum degree, in this case 3, it could contribute

at most 3
2n2 − 3

2n8 − 3
n which has an absolute value less than 1 for any n ≥ 3. Therefore,

by contradiction this holds.

Theorem 8. k-charge removal, minimal-k≥-charge removal and k≥-charge re-

moval are NP-Complete when limited to only two species of ion and restricted to the

Buckingham-Coulomb potential energy function.

Proof. Building on the results from Lemmas 5, 6, 7, and 8, the next step is to show NP-

Completeness. Lemma 6 shows that, provided Inequalities (4.1) and (4.2) hold, the optimal

solution is to leave an independent set. From Lemma 5 it follows that these inequalities

are satisfiable for any graph under the given construction, noting that the assignment of

parameters gives an energy of −1 within pairs. Lemma 7 shows that the upper bound is

reachable if and only if an independent set has been left. It follows from Lemma 8 that

the assumption that it is preferable to remove a set of pairs over any other set of charges

holds when the inequalities also do.

Therefore there is a satisfiable instance of k-charge removal or any generalisation

if and only if the instance of independent set for the maximum degree 3 planar graph

instance is satisfiable. Conversely if the independent set instance is satisfiable, the cor-

responding k-charge removal instance is satisfied by leaving the vertices corresponding

to the independent set in the long orthogonal penny graph construction. Hence under

these restriction all three problems are NP-complete. Note that this may be extended to

vertices with charges ±c for any given c.

Corollary 4. It is NP-hard to approximate the optimal solution tok-charge removal,

minimal-k≥-charge removal, or k≥-charge removal within a factor 1 + 3
n−k−1 for

the Buckingham-Coulomb potential.

Proof. Observe that following Lemma 7, given a set of k ion pairs corresponding to an

independent set is (k− 1)( A12

eB12
−C12− 1), or in terms of the k-charge removal problem

(n−k−1)( A12

eB12
−C12−1). In the case that there exists some pair of ion-pairs representing ad-

jacent vertices, there must be an energy penalty of 4
(

A11

eB11n
− C11

n6 + 1
n + A12

eB12n̂
− C12

n̂6 − 1
n̂

)
.

Therefore, a lower bound on the energy in the case that there is at least some pair of ions

adjacent to each other is (n−k)( A12

eB12
−C12−1)+4

(
A11

eB11n
− C11

n6 + 1
n + A12

eB12n̂
− C12

n̂6 − 1
n̂

)
≥
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v1

v2 v3

v+1

v+2 v+3

v−1

v−2 v−3

Figure 4.2: Example of the construction of an arrangement from a penny graph, om this
example v1 and v2 are adjacent, as are v2 and v3, but not v1 and v3

n

n

√
2n

√
3n

√
3n

n

n

n
n

Figure 4.3: Illustration of the distances between the centre of non-adjacent pennies using
the construction of Cerioli et al. [18].

(n − k − 1)( A12

eB12
− C12 − 1) + 4

(
A11

eB11n
− C11

n6 + 1
n + A12

eB12n̂
− C12

n̂6 − 1
n̂

)
. Therefore any ap-

proximation algorithm that can achieve an approximation ratio smaller than:

(n− k − 1)( A12

eB12
− C12 − 1) + 3

(
A11

eB11n
− C11

n6 + 1
n + A12

eB12n̂
− C12

n̂6 − 1
n̂

)
(n− k − 1)( A12

eB12
− C12 − 1)

=

1 +
3
(

A11

eB11n
− C11

n6 + 1
n + A12

eB12n̂
− C12

n̂6 − 1
n̂

)
(n− k − 1)( A12

eB12
− C12 − 1)

≥ 1 +
3

n− k − 1

would be able to find the optimal solution to the underlying k-independent set problem in

polynomial time unless P = NP .

4.2.3 NP-Hardness for the Coulomb Potential with Unbounded Charges

The final case that is considered in this work is when the energy function is the Coulomb

potential. NP-hardness for this case is shown by a reduction from knapsack to k≥-

charge removal. Note that with an unbounded number charge values this problem is

not in NP for minimal-k≥-charge removal due to Proposition 5 and is trivially NP-hard

for k-charge removal due to Corollary 1. This reduction requires using an unbounded
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number of charge values, thus it follows from proposition 5 that it is NP-hard to verify

if a solution to an instance of k≥-charge removal is minimal. In this reduction it is

shown that an instance of k≥-charge removal such that the set of ions left correspond

to the items for the knapsack instance if and only if there is a set satisfying the knapsack

instance.

Theorem 9. k≥-charge removal and minimal-k≥-charge removal remains NP-hard

when the energy function is limited to the Coulomb potential.

Proof. In the knapsack problem, henceforth knapsack, the input is a bag with capacity C,

and a set of items S. Each item i ∈ S has a weight wi, and a value pi. In this problem the

goal it to find the subset S′ ⊆ S such that
∑
i∈S′

pi is maximised conditional on
∑
i∈S′

wi ≤ C.

Alternatively this may phrased as a decision problem by taking some goal value g and

asking if there is an S′ such that
∑
i∈S′

pi ≥ g.

NP-completeness for k≥-charge removal and minimal-k≥-charge removal is

shown by a reduction from the knapsack problem. Given an instance, I, of the knap-

sack problem as described above, an instance, I ′, of k≥-charge removal is created as

follows. For every i ∈ S, two charges are created denoted v+
i and v−i and labelled with the

corresponding item. These are assigned a charge of wi to v+
i and −wi to v−i .

The values u and α are defined such that u is some value such that there does not

exist any pair of items, i and j, such that pi > pj but pj + u ≥ pi, and u is less than the

smallest unit of precision for the value of the items. Using this, α is defined as some value

satisfying the inequality u > 4n2w2
max
α , where wmax is the weight of the heaviest item. This

ensures that α is some distance such that if all vertices are at least α away from each other

there is a difference of no more than u in energy, which is sufficient to ensure that vertices

at that distance may be safely ignored.

These vertices are now placed such that, for each item, the distance between the two

vertices v+
i and v−i has a potential energy of −pi. Recall that UCij =

qiqj
rij

. This is achieved

by placing them at a distance of
w2
i
pi

. Each of the pairs of vertices representing an item is

placed in a line so that the distance between any two pairs is no less than α. An example

of this construction is provided in Figure 4.4.

The value k is chosen as k =

(∑
i∈S

wi

)
− c, ensuring that there are no more than

c vertices left after removing k, corresponding to a valid assignment for the knapsack

instance. Finally, the goal value is chosen as g′ = −g+u. It follows from this construction
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Item Weight Value
I1 9 3
I2 6 2
I3 3 3

+9 −9 +6 −6 +3 −3

27 α 18 α 3

Figure 4.4: Example of construction of the structure from the knapsack instance. In this
u < 1 and α > 2916

that any removal of k≥ charges are a valid packing in terms of the capacity.

If the k≥-charge removal instance is satisfiable then there must be some valid pack-

ing of no more than g′ energy. As the interaction between vertices corresponding to different

items is trivially small, the only way to achieve this is to choose a set of vertex pairs with

an energy between them no more than g′. As the energy between pairs is equal to the value

of the items, the only way this is achieved this is to have items corresponding to a packing

with value at least g. Conversely if the k≥-charge removal instance is not satisfiable,

there does not exist a packing of value g by the same arguments.

Similarly if the knapsack instance is satisfiable then the k≥-charge removal in-

stance may be satisfied by removing all charges not corresponding to a satisfying packing

of the knapsack instance. Finally if the knapsack instance is not satisfiable then by

the previous arguments the kcr instance also can not be satisfied. Therefore this problem

is NP-Complete. Note that as the weights on all items is positive, with a corresponding

negative energy in I ′, given a non-minimal satisfying solution there exists some minimal

satisfying solution. Therefore minimal-k≥-charge removal is also NP-hard.



Chapter 5

The k-Centre Problem on

Combinatorial Crystals

With the problem of directly solving csp being seemingly intractable, the obvious question

is if there exists an alternative approach to solve the problem. In the following chapters,

we focus on the idea of sampling potential crystals structures. At a high level, the goal of

this problem is to choose a diverse set of crystal structures, with the hope that by choosing

a diverse set, a structure close to the optimal can be found. Here we focus on the local

structures, representing the interactions between ions that are as close as possible. The

motivation for this approach comes from the energy functions which we look at which

have a rapid decrease in energy as distance increases. For example, the Coulomb potential

defined as
qi·qj
rij

tends rapidly towards 0. As such, finding local structures provides a strong

basis for exploring the space of possible solutions.

We use the k-centre problem as a basis to formalise these notions as a computer science

problem. The k-centre problem takes as input a weighted graph G = (V,E) and integer

k, with the goal of finding a set S of k vertices from V minimising maxv∈V minu∈SD(v, u)

where D(v, u) returns the distance between vertices v and u. To use the k-centre problem

as a basis for this setting it is necessary to define a distance between words emphasising

local differences.

This chapter is divided into four sections. Section 5.1 provides the key definitions for

this chapter, including the distance used and some fundamental results for the k-centre

problem in this setting. Section 5.2 provides the first approximation algorithm for solving

this problem in the one dimensional case for unconstrained necklaces, using de Bruijn

78
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sequences as a basis. Section 5.3 provides a less precise but more general approximation

algorithm, covering the other settings discussed in this thesis, including bracelets, necklaces

with constrained Parikh vectors, necklaces with forbidden subwords and multidimensional

necklaces. Finally Section 5.4 provides further discussion on the usage of this problem in

the context of csp.

5.1 The Overlap Distance and the k-Centre Problem

In this section we formally define the k-centre problem for cyclic words. At a high level, the

input to our problem is an alphabet of size q, a vector of dimensions n = (n1, n2, . . . , nd)

that defines the size of the d-dimensional words, and a positive integer k. Note that in

the one dimensional case n may be given as a single scalar value, n. The goal is to choose

a set S of k necklaces from the set Nn
q such that the maximum distance between any

necklace w̃ ∈ Nn
q and the set S is minimised. Since there is no standard notion of distance

between necklaces, our first task is to define one. To this end, we introduce the overlap

distance, which aims to capture similarity between crystalline materials emphasising local

differences. At a high level, the overlap distance between two necklaces is the inverse of

the overlap coefficient between them, in this case 1 minus the overlap coefficient. This can

be seen as a natural distance based “bag-of-words” techniques used in machine learning

[36].

Overlap Distance for Necklaces. Our definition of the overlap distance depends of

the well studied overlap coefficient, defined for a pair of set A and B as |A∩B|
min(|A|,|B|) . For

notation let C(A,B) return the overlap coefficient between two sets A and B. Observe that

C(A,B) returns a rational value between 0 and 1, with 0 indicating no common elements

and 1 indicating that either A ⊆ B or B ⊆ A. In the context of necklaces the overlap

coefficient C(w̃, ṽ) is defined as the overlap coefficient between the multisets of all subwords

of w̃ and ṽ. For some necklace w̃ of dimensions n, the multiset of subwords of dimensions

` contains all ū v` w̄. For each subword ū appearing m times in w̃, m copies of ū are

added to the multiset. This gives a total of N subwords of dimensions ` for any `, where

N = n1 · n2 · . . . · nd. For example, given the necklace represented by aaab, the multiset of

subwords of length 2 are {aa, aa, ab, ba} = {aa× 2, ab, ba}. The multiset of all subwords is

the union of the multisets of the subwords for every vector of dimensions, having a total

size of N2; see Figure 5.1.
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word ababab word abbabb Intersection
1 a× 3, b× 3 a× 2, b× 4 5
2 ab× 3, ba× 3 ab× 2, bb× 2, ba× 2 4
3 aba× 3, bab× 3 abb× 2, bba× 2, bab× 2 2
4 abab× 3, baba× 3 abba× 2, bbab× 2, babb× 2 0
5 ababa× 3, babab× 3 abbab× 2, bbabb× 2, babba× 2 0
6 ababab× 3, bababa× 3 abbabb× 2, bbabba× 2, babbab× 2 0

Total 11

Figure 5.1: Example of the overlap coefficient calculation for a pair of words ababab and
abbabb. There are 11 common subwords out of the total number of 36 subwords of length
from 1 till 6, so C(ababab, abbabb) = 11

36 and O(ababab, abbabb) = 25
36 .

A aaaa B aaab C aabb
D abab E abbb F bbbb

w̃\ṽ A B C D E F

A 0 10
16

13
16

14
16

15
16 1

B 10
16 0 9

16
10
16

12
16

15
16

C 13
16

9
16 0 10

16
8
16

13
16

D 14
16

10
16

10
16 0 6

16
14
16

E 15
16

12
16

8
16

10
16 0 10

16
F 1 15

16
13
16

14
16

8
16 0

Figure 5.2: Example of the overlap distance D(〈w̃〉, 〈ṽ〉) for all binary cyclic words of
length 4.

To use the overlap coefficient as a distance between w̃ and ṽ, the overlap coefficient is

inverted so that a value of 1 means w̃ and ṽ share no common subwords while a value of

0 means w̃ = ṽ. The overlap distance (see example in Figure 5.1) between two necklaces

w̃ and ṽ is O(w̃, ṽ) = 1− C(w̃, ṽ). Proposition 8 shows that this distance is a metric

distance.

Proposition 8. The overlap distance for necklaces is a metric distance.

Proof. Let ã, b̃, c̃ ∈ Nn
q , for some arbitrary vector n ∈ Nd and q ∈ N. In order for the

overlap distance to satisfy the metric property, O(ã, b̃) must be less than or equal to

O(ã, c̃) + O(b̃, c̃). Rewriting this gives 1 − C(ã, b̃) ≤ 2 + C(ã, b̃) − C(b̃, c̃) which can be

rewritten in turn as C(ã, b̃) + C(b̃, c̃) ≤ 1 + C(ã, b̃). Observe that if C(ã, c̃) + C(b̃, c̃) > 1

then |ã∪c̃|
N2 + |b̃∪c̃|

N2 > 1, meaning that |ã∪c̃|+|b̃∪c̃| > N2. This implies that ã and b̃ share at

least |ã∪ c̃|+ |b̃∪ c̃|−N2 subwords. Therefore C(ã, ñ) must be at least C(ã, ñ)+C(b̃, c̃)−1.

Hence O(ã, b̃) ≤ O(ã, c̃) + O(b̃, c̃).
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The k-Centre Problem. The goal of the k-Centre problem for necklaces is to select

a set of k necklaces of dimensions n over an alphabet of size q that are “central” within

the set of necklaces Nn
q . Formally the goal is to choose a set S of k necklaces such that

the maximum distance between any necklace w̃ ∈ Nn
q and the nearest member of S is

minimised. Given a set of necklaces S ⊂ Nn
q , we use D(S,Nn

q ) to denote the maximum

overlap distance between any necklace in Nn
q and its closest necklace in S.

Problem 11. k-Centre problem for necklaces.

Input: A vector of d-dimensions n ∈ Zd, an alphabet Σ of size q, and an integer

k ∈ Z.

Question: What is the set S ⊆ Nn
q of size k minimising D(S,Nn

q )?
There are two major challenges we have to overcome in order to solve Problem 11, the

exponential size of Nn
q , and the lack of structural, algorithmic, and combinatorial results

for multidimensional necklaces. We show that the conceptually simpler problem of verifying

whether a set of necklaces is a solution for Problem 12 is NP-hard for any dimension d.

Problem 12. The k-Centre verification problem for necklaces. Given a set of k necklaces

S ∈ Nn
q and a distance `, does there exist some necklace ṽ ∈ Nn

q such that O(s̃, ṽ) > ` for

every s̃ ∈ S?

Input: A vector of d-dimensions n ∈ Zd, an alphabet Σ of size q, an integer k ∈ Z,

and rational distance ` ∈ Q.

Question: Does there exists a set S ⊆ Nn
q of size k such that D(S,Nn

q ) ≤ `?

Theorem 10. Given a set of k necklaces S ∈ Nn
q and a distance `, it is NP-hard to

determine if there exists some necklace ṽ ∈ Nn
q such that O(s̃, ṽ) > ` for every s̃ ∈ S for

any dimension d.

Proof. We prove the claim via a reduction from the Hamiltonian cycle problem on bipartite

graphs to Problem 12 in one dimension. Note that if the problem is hard in the 1D case,

then it is also hard in any dimension d ≥ 1 by using the same reduction for necklaces

of dimensions (n1, 1, 1, . . . , 1). Let G = (V,E) be a bipartite graph containing an even

number n ≥ 6 of vertices. The alphabet Σ is constructed with size n such that there is a

one to one correspondence between each vertex in V and symbol in Σ. Using Σ a set S of

necklaces is constructed as follows. For every pair of vertices u, v ∈ V where (u, v) /∈ E,

the necklace corresponding to the word (uv)n/2 is added to the set of centres S. Further

the word vn, for every v ∈ V , is added to the set S.
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For the set S, we ask if there exists any necklace in N n
q that is further than a distance

of 1 − 3
n2 . For the sake of contradiction, assume that there is no Hamiltonian cycle in G,

and further that there exists a necklace w̃ ∈ Nn
q such that the distance between w̃ and

every necklace ṽ ∈ S is greater than 1 − 3
n2 . If w̃ shares a subword of length 2 with any

necklace in S then w̃ would be at a distance of no less than 1− 3
n2 from S. Therefore, as

every subword of length 2 in S corresponds to a edge that is not a member of E, every

subword of length 2 in w̃ must correspond to a valid edge.

As w̃ can not correspond to a Hamiltonian cycle, there must be at least one vertex v

for which the corresponding symbol appears at least 2 times in w̃. As G is bipartite, if

any cycle represented by w̃ has length greater than 2, there must exist at least one vertex

u such that (v, u) /∈ E. Therefore, the necklace (uv)n/2 is at a distance of no more than n2

3

from w̃. Alternatively, if every cycle represented by w̃ has length 2, there must be some

vertex v that is represented at least 3 times in w̃. Hence in this case w̃ is at a distance

of no more than 1 − 3
n2 from the word vn ∈ S. Therefore, there exists a necklace at a

distance of greater than 1− 3
n2 if and only if there exists a Hamiltonian cycle in the graph

G. Therefore, it is NP-hard to verify if there exists any necklace at a distance greater than

l for some set S.

The combination of this negative result with the exponential size of Nn
q relative to n and

q makes finding an optimal solution for Problem 11 exceedingly unlikely. As such the

remainder of our work on the k-centre problem for necklaces focuses on approximation

algorithms. Lemma 9 provides a lower bound on the optimal distance.

Lemma 9. Let S ⊆ Nn
q be an optimal set of k centres minimising D(S,Nn

q ) then D(S,Nn
q ) ≥

1− logq(k·N)

N .

Proof. We first prove the lemma for the one-dimensional case, then extend the proof to the

multidimensional setting. Recall that the distance between any pair of necklaces ũ and ṽ

is determined by the overlap coefficient and by extension the number of shared subwords

between ũ and ṽ. Hence the distance between the furthest necklace w̃ ∈ N n
q and the

optimal set S is bound from bellow by determining an upper bound on the number of

shared subwords between w̃ and the words in S. For the remainder of this proof let w̃

to be the necklace furthest from the optimal set S. Further for the sake of determining

an upper bound, the set S is treated as a single necklace S̃ of length n · k. This may be

thought of as the necklace corresponding to the concatenation of each necklace in S. Note
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that the length of S is k ·n. As the distance between w̃ and S̃ is no more than the distance

between w̃ and any ṽ ∈ S, the distance between w̃ and S̃ provides a lower bound on the

distance between w̃ and S.

In order to determine the number of subwords shared by w̃ and S̃, consider first the

subwords of length 1. In order to guarantee that w̃ shares at least one subword of length

1, S̃ must contain each symbol in Σ, requiring the length of S̃ to be at least q. Similarly,

in order to ensure that w̃ shares two subwords of length 1 with S̃, S̃ must contain 2 copies

of every symbol on Σ, requiring the length of S̃ to be at least 2q. More generally for S̃ to

share i subwords of length 1 with w̃, S̃ must contain i copies of each symbol in Σ, requiring

the length of S̃ to be at least i · q. Hence the maximum number of subwords of length 1

that w̃ can share with S̃ is either bn·kq c, if bn·kq c ≤ n, or n otherwise.

In the case of subwords of length 2, the problem becomes somewhat more complicated.

Note that in order to share a single word of length 2, it is not necessary to to have every

subword of length 2 appear as a subword of w̃. Instead, it is sufficient to use only the

prefixes of the canonical representations of each necklace. For example, given the binary

alphabet {a, b}, every necklace has either aa, ab or bb as the prefix of length 2. Note that

any necklace of length 2 followed by the largest symbol q in the alphabet n−2 times belongs

to the set Nn
q . As such, a simple lower bound on the number of prefixes of the canonical

form of necklaces is the number of necklaces of length 2, which in turn is bounded by q2

2 .

Noting that these prefixes in S̃ may overlap, in order to ensure that S̃ and w̃ share at least

one subword of length 2, the length of S̃ must be at least q2

2 . Similarly, for S̃ and w̃ to

share i subwords of length 2, the length of S̃ must be at least i·q2
2 . Hence the maximum

number of subwords of length 2 that S̃ and w̃ can share is either b2n·k
q2
c, if b2n·k

q2
c ≤ n, or n

otherwise. More generally, in order for S̃ to share at least one subword of length j with w̃,

the length of S̃ must be at least qj

j . Further the maximum number of subwords of length

j that S̃ and w̃ can share is either b j·n·k
qj
c, if b j·n·k

qj
c ≤ n or n otherwise.

Using these observations, the maximum length of a common subword that w̃ can share

with S̃ is the largest value l such that ql

l ≤ n ·k. By noting that ql

l ≥
ql

n , a upper bound on

l can be derived by rewriting the inequality ql

n ≤ n ·k as l = 2 logq(n ·k). Note further that,

for any value l′ > l, there must be at least one necklace that does not share any subword of

length l′ with S̃ as S̃ can not contain enough subwords to ensure that this is the case. This

bound allows an upper bound number of shared subwords between w̃ and S̃ to be given by

the summation
2 logq(n·k)∑

i=1
min(b i·n·k

qi
c, n) ≤ n·logq(n·k)+

logq(k·n)

q−1 ≈ q·n logq(k·n)

q−1 ≈ n logq(k·n).
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Using this bound, the distance between w̃ and S̃ must be no less than 1− logq(k·n)

n .

The same arguments can be applied to the multidimensional case. Let m = ( m1, m2,

. . ., md) be a vector of d-dimensions such that M = m1 ·m2 · . . . ·md. The largest value

of M such that S̃ can contain every subword with M positions is 2 logq(n · k). The upper

bound on the number of words of dimensions m is qM

M . Let F (x,m) return the size of the

set [m], i.e. the number of vectors with x positions that are less than or equal to m in each

dimension. Using this notation, the maximum number of shared subwords between w̃ and

S̃ is
M∑
i=1

F (i,m) · i·N ·k
qi

. Note that
M∑
i=1

F (i,m) · i·N ·k
qi
≤

M∑
i=1

i·N ·k
qi

. Therefore, the upper bound

on the number of common subwords in the multidimensional setting is N logq(k ·N), giving

a bound on the distance of 1− logq(k·N)

N .

Sections 5.2 and 5.3 provide two approximation algorithms for the k-centre problem using

Lemma 9 as a lower bound. The first of these is 1 + (
logq (kN)

N−logq (kN) −
log2

q(kN)

2N(N−logq (kN)))-

approximate with a running time O(N ·k), but it requires access to the de-Bruijn hypertori

of the multidimensional necklaces; this is a generalisation of de-Bruijn sequences. When

d = 1, there exists an efficient algorithm for computing the de-Bruijn sequence. However,

for d > 1, no algorithm is known for computing a de-Bruijn hypertori. Therefore, we

develop a second algorithm that is 1 + (
logq (kN)

N−logq (kN) −
log2

q(k)

2N(N−logq (kN)))-approximation with

a running time O(N6), requiring techniques presented in Section 8.2.

The main idea behind both algorithms is to try to find the largest vector of dimensions

` = (l1, l2, . . . , ld) such that every subword of dimensions ` appears at least once in some

word within the set. In this setting m is larger than ` if m1 ·m2 · . . . ·md > l1 ·l2 · . . . ·ld. This

is motivated by observing that if two necklaces share a subword of length l, they must also

share 2 subwords of length l− 1, 3 of length l− 2, and so on. Lemma 10 provides an upper

bound for the overlap distance between any necklace in |N n
q | and the set S containing all

subwords of length l.

Lemma 10. Given w̃, ṽ ∈ Nn
q sharing a common subword ā of dimensions m, let xi = ni ·

mi if ni = mi, and xi = mi(mi+1)
2 otherwise. The distance between w̄ and v̄ is bounded from

above by O(w, v) ≤ 1−
∏d
i=1 xi
N2 ≤ 1−M2

N2 where N = n1 ·n2 ·. . .·nd and M = m1 ·m2 ·. . .·md.

Proof. Note that the minimum intersection between w̃ and ṽ is the number of subwords

of ā, including the word ā itself. To compute the number of subwords of ā, consider

the number of subwords starting at some position j ∈ [|ā|]. Assuming that |ā|i < ni for

every i ∈ [d], the number of subwords starting at j corresponds to the size of the set
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Sequence: 0000001000011000101000111001001011001101001111010101110110111111
Centre Word
1 000000100001100010100
2 101000111001001011001
3 110011010011110101011
4 000000 0101110110111111

Figure 5.3: Example of how to split the de Bruijn sequence of order 6 between 4 centres.
Highlighted parts are the shared subwords between two centres.

[j, |ā|], equal to
d∏
i=1

mi − |ā|i. This gives the number of shared subwords as being at least∑
j∈[|ā|]

∏
i∈[d]

mi − |ā|i ≥
∑

j∈[M ]

j ≥ M2

2 . Therefore, the distance between w̃ and ṽ is no more

than 1− M2

2N2 .

5.2 Approximating the k-Centre Problem using de-Bruijn

Sequences

In this section we provide our first approximation algorithm that requires access to de-

Bruijn sequences for the 1D case and to de-Bruijn hypertori for higher dimensions. The

main idea is to determine the largest de-Bruijn sequence that can fit into the set of k-

centres. As the de Bruijn sequence of order l contains every word in Σl as a subword, by

representing the de Bruijn sequence of order l in the set of centres we ensure that every

necklace shares a subword of length l with the set of k-centres. Therefore, by determining

the longest sequence that can be represented by k centres, an upper bound on the distance

between the furthest necklace and the set of k-centres is derived.

Definition 23. A de Bruijn hypertorus of order n is a cyclic d-dimensional word T̄

containing, as a subword, every word of dimensions n over the alphabet Σ of size q. Further,

each such word of dimensions n over the alphabet Σ appears exactly once as a subword of

T .

Lemma 11. There exists an O(n ·k) time algorithm for the k-Centre problem on N n
q such

that every word in N n
q shares a common subword of length at least logq(n · k) with one or

more centres. Further, no word in N n
q is at a distance of more than 1− log2

q(k·n)

2n2 from the

nearest centre.
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Proof. The high level idea of this algorithm is to spilt a de Bruijn sequence of order λ

between the k centres. The motivation behind this approach is to represent every word

of length λ as a subword of at least one centre. Note that the length of the de Bruijn

sequence of order λ is qλ.

Given a de Bruijn sequence s̄, naively splitting s̄ into k words may lead to subwords

being lost. For example, take the de Bruijn sequence of order 4 over the alphabet {a, b}
aaaabaabbababbbb, dividing this between two words of length 8 results in the samples

aaaabaab and bababbbb, missing the words aabb, abba, and bbaa. In order to account for

this, the sequence is split into centres of size n − λ + 1, with the final λ − 1 symbols of

the ith centre being shared with the (i + 1)th centre. In this manner, the first centre is

generated by taking the first n symbols of the de Bruijn sequence. To ensure that every

subword of length λ occurs, the first λ− 1 symbols of the second centre is the same as the

last λ−1 symbol of the first centre. Repeating this, the ith centre is the subword of length

n starting at position i(n − λ + 1) + 1 in the de Bruijn sequence. An example of this is

given in Figure 5.3.

The leaves the problem of determining the largest value of λ such that qλ ≤ k·(n−λ+1).

The inequality qλ ≤ k·(n−λ+1) can be rearranged in terms of λ as λ ≤ logq(k·(n+1)−k·λ).

Noting that λ must be no more than logq(k · n), this upper bound on the value of λ can

be rewritten as logq(k · (n + 1 − logq(k · n))) ≈ logq(k · n). Using Lemma 10, along with

logq(k · n) as an approximate value of λ gives an upper bound on the distance between

between each necklace in N n
q and the set of samples of 1− log2

q(kn)

2n2 .

As the corresponding de Bruijn sequence can be computed in no more than O(k · n)

time [90] and the set of samples can be further derived from the sequence in at most O(k ·n)

time, the total complexity is at most O(k · n). Note that any algorithm that outputs such

a set of centres takes at most Ω(k · n) time.

Theorem 11. Problem 11 in 1D can be approximated in O(n · k) time with an approxi-

mation factor of 1 + f(n, k) where f(n, k) =
logq (k·n)

n−logq (k·n) −
log2

q(kn)

2n(n−logq (kn)) and f(n, k) → 0

for n→∞.

Proof. Recall from Lemma 9 that the overlap distance is bounded by 1− logq(k·n)

n . Using the

lower bound of 1− log2
q(kn)

2n2 given by Lemma 11 gives an approximation ratio of
1−

log2q(kn)

2n2

1− logq(k·n)
n

=

2n2−log2
q(kn)

2n2−2n logq (kn)
= 1+

2n logq (kn)−log2
q(kn)

2n2−2n logq (kn)
= 1+

logq (kn)

n−logq (kn)−
log2

q(kn)

2n(n−logq (kn)) . Note that f(n, k) =
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2n logq (kn)−log2
q(kn)

2n2−2n logq (kn)
converges to 0 when n→∞ for a constant k < qn/n.

Theorem 12. Let T be a d-dimensional de Bruijn hyper torus of dimensions (x, x, . . . , x).

There exist k subwords of T that form a solution to the k-centre problem for N (y,y,...,y)
q

with an approximation factor of 1 + f(n, k) where f(n, k) =
logq (kN)

N−logq (k·N) −
log2

q(k·N)

2N(N−logq (k·N)) ,

f(n, k)→ 0, N →∞.

Proof. Recall from Lemma 9 that the lower bound on the distance between the centre and

every necklace in Nn
q is 1− logq(k·N)

N . As in Theorem 11, the goal is to find the largest de

Bruijn torus that can “fit” into the centres. To simplify the reasoning, the de Bruijn hyper

tori here is limited to those corresponding to the word where the length of each dimension

is the same. Formally, the de Bruijn hypertori are restricted to be of the dimensions

m1 = m2 = . . . = mj = j
√
N for some j ∈ [d], giving the total number of positions in the

tori as M . Similarly, the centres is assumed to have dimensions n1 = n2 = . . . = nd = d
√
N ,

giving N total positions.

Observe that the largest torus that can be represented in the set of centres has M

positions such that qM ≤ k · N (d−j)/d( d
√
N − j

√
M + 1)j . This can be rewritten to give

M ≤ logq(k · N (d−j)/d( d
√
N − j

√
M + 1)j). Noting that M is of logarithmic size relative

to N , this is approximately equal to M ≤ logq(k · N). Using Lemma 10, the minimum

distance between any necklace in Nn
q is 1 − log2

q(kN)

2N2 . This is compared to the optimal

solution, following the arguments from Theorem 11 giving a ratio of 1 + f(N, k) where

f(N, k) =
2·N logq (k·N)−log2

q(k·N)

2·N2−2·N ·logq (k·N)
=

logq (kN)

N−logq (kN) −
log2

q(kN)

2N(N−logq (kN)) .

For both cases table providing some explicit examples of the approximation ratio for dif-

ferent values of n and k is given in Table 5.1. While this provides a good starting point for

solving the k-Centre problem for Nn
q , results on generating de Bruijn tori are highly lim-

ited, focusing on the cases with small dimensions [19, 49, 51, 52, 53]. As such an alternate

approach is needed.

5.3 Approximating the k-Centre Problem using Prefix Trees

In this section we present our second approximation algorithm. At a high level our algo-

rithm works as follows. It recursively builds a tree of possible necklace prefixes, starting

with the empty string, in a breadth first manner, continuing until there are k such pre-

fixes. Once these prefixes have been generated, the centres are built as necklaces containing
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k\n 1 2 3 4 5 6 7 8

1 1.0 1.75 1.8242 1.75 1.6657 1.59388 1.53532 1.4875
2 1.0 1.0 4.54496 2.875 2.322 2.04096 1.86822 1.75
3 1.0 1.0 1.0 5.76696 3.17774 2.48677 2.15592 1.95785
4 1.0 1.0 1.0 1.0 4.61912 3.00217 2.43963 2.14583
5 1.0 1.0 1.0 1.0 7.98402 3.65337 2.73732 2.32623
6 1.0 1.0 1.0 1.0 27.84082 4.54496 3.06221 2.50535
7 1.0 1.0 1.0 1.0 1.0 5.88615 3.4276 2.68724
8 1.0 1.0 1.0 1.0 1.0 8.19368 3.84946 2.875

k\n 1 2 3 4 5 6 7 8

1 1.0 1.18333 1.19493 1.18333 1.16897 1.15565 1.144 1.13393
2 1.41667 1.41667 1.34509 1.29167 1.25296 1.22393 1.20138 1.18333
3 1.8242 1.59388 1.44797 1.36238 1.30633 1.26659 1.23682 1.2136
4 2.33333 1.75 1.53018 1.41667 1.34644 1.29825 1.2629 1.23575
5 3.09914 1.89704 1.6006 1.46153 1.379 1.32369 1.28372 1.25334
6 4.54496 2.04096 1.66333 1.50021 1.40664 1.34509 1.30113 1.26799
7 8.75423 2.18549 1.72065 1.53449 1.4308 1.36364 1.31615 1.28059
8 1.0 2.33333 1.77396 1.56548 1.45235 1.38007 1.32939 1.29167

Table 5.1: Table of approximation ratio for the algorithm given in Theorem 11 for different
values of n and k for a binary alphabet (top) and an alphabet of size 8 (below). Note that
when k ≥ qn the approximation ratio is 1 as every necklace can be represented in the set.
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these prefixes. Our algorithm relies on the operations of efficiently counting and ranking

multidimensional necklaces. However, there are no known algorithms for these operations

for bracelets, constrained necklaces, and multidimensional necklaces. Chapters 6, 7 and

8 provide such algorithms. For now, we assume that the number of members of a set of

cyclic words sharing a given prefix can be computed.

The k-Centres selection based on a tree of prefixes: At a high level, this prefix

algorithm works by finding a set of k prefixes, i.e. a set of k words corresponding to prefixes

of the canonical forms of the cyclic words. The algorithm recursively builds the tree of

possible prefixes, starting with the empty string, in a breadth first manner, continuing

until there are k such prefixes. Once these prefixes have been generated, the centres are

built as necklaces containing these prefixes.

This is achieved as follows. At each step there is the set of prefixes P of length l such

that |P| < k. Let P′ be the set of prefixes of length l+ 1. Observe that every prefix in P′

is of the form p̄ : x for some x ∈ Σ and p̄ ∈ P. Additionally, for every p̄ ∈ P, there is at

least one member of P′, p̄′, such that p̄′ = p̄ : x for some x ∈ Σ. Therefore P′ is generated

by considering each prefix in P. Given p̄ ∈ P and x ∈ Σ, p̄ : x bellongs to P′ if and only

if it is the prefix of cyclic word belonging to the relevant set. The set P′ is generated by

repeating this process for every p̄ ∈ P, x ∈ Σ. Once the size of P′ is greater than k, the

algorithm terminates using the prefixes in P as a basis to construct the set of k centres.

For each p̄ ∈ P, a centre is generated by appending an arbitrary subword following the

prefix.

This approach is utilised for Multidimensional Necklaces, Bracelets Parikh Vectors

solving systems of linear equations, Necklaces with restricted Parikh vectors, Necklaces

with forbidden subwords, and Fixed Content Multidimensional Necklaces. In each case

the number of words in the relevant setting with a given prefixes must be tracked. This is

only possible through use of novel ranking procedures that are discussed in the following

chapters.

Theorem 13. There exists a polynomial-time algorithm to construct k centres of Nn
q , Bnq ,

P(n,A,C), N n
q (A,C), N n

q (F) or Nn
p that is an approximation of the optimal solution by

a factor of 1 + ε where ε =
logq (kN)

N−logq (kN) −
log2

q(k)

2N(N−logq (kN)) and ε→ 0 for N →∞.

Proof. Let λ be the length of the prefixes at the termination of the algorithm. To determine

the length of λ, observe that each centre corresponds to a prefix of length λ. Therefore, this

becomes the problem of determining the largest value of λ such that the size of the set is less



90 Duncan Adamson

than k. An upper bound on the size of the set of necklace prefixes of length λ is qλ. As this

must be less than or equal to k, this is rewritten as λ ≤ logq(k). Using Lemma 10, an upper

bound on the distance between each word and the nearest centre is 1 − logq(k)(logq(k)+1)

2N2 ,

which is bounded by
log2

q(k)

2N2 . Lemma 9 gives a lower bound on the distance between

every necklace in Nn
q and the nearest centre in the centre of 1 − logq(k·N)

N . Therefore,

this algorithm gives an approximation of the optimal solution by a factor of
1−

log2q
k

2N2

1− log2q(k)

2N2

,

which is simplified to a factor of 1 +
2N logq (kN)−log2

q(k)

2N2−2N logq (kN)
. Note that ε =

2N logq (kN)−log2
q(k)

2N2−2N logq (kN)

=
logq (kN)

N−logq (kN) −
log2

q(k)

2N(N−logq (kN)) converges to 0 when n→∞ for any fixed k. To show that

the method terminates in polynomial time, we note that the time to compute the number

of necklaces with a given prefix can be determined as follows:

• The number of bracelets sharing a given prefix can be computed in O(n4 · q2) time

(shown in Lemma 28).

• The number of Parikh vectors solving the system of linear equations A · x = C can

be found in O(C · n · q2) time, where C = C1 ·C2 · . . . ·Cm (shown in Lemma 30).

• The number of necklaces with Parikh vectors solving the system of linear equations

A · x = C sharing a given prefix can be found in O(C · n2 · q time, where C =

C1 ·C2 · . . . ·Cm (shown in Lemma 33).

• The number of necklaces containing no forbidden subwords from a set F sharing a

given prefix can be found in O(log2(n) · n8 · |F|2) time (shown in Lemma 42).

• The number of multidimensional necklaces sharing a given prefix can be found in

O(N5) time (shown in Lemma 55).

• The number of fixed-content multidimensional necklaces sharing a given prefix can

be found in O(n6+q) time (shown in Lemma 56).

As an additional cost, for every i ≤ λ + 1, at most k centres are checked. To determine

the longest λ, let there be pi prefixes of length i. Observe that there are at least pi + q− 1

words of length i = 1. Therefore the number of prefixes of length i is at least (i+ 1)q − i.
Therefore the longest length is k−q

q−1 . Thus the maximum number prefixes that need to be

checked is k· k−qq−1 , giving an additional cost of O(k2) to determining the set of k samples.
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5.4 The k-Centre Problem for Crystal Structure Prediction

This section considers in more detail how to apply the k-centre problem to the context of

csp. There are two primary methods that the k-centre technique may be applied to, either

generating a set of starting samples which may then be used by an alternative method

such as MC-EMMA or FUSE or using the k-centre problem to directly solve csp.

In both cases, the overlap distance is used for comparison. As mentioned in Section 5.1,

the main motivation behind this distance is to sample a large number of local substructures.

These are prioritised as local interactions correspond to the majority of the energy in crystal

structures.

In the first case, these local structures can be used to inform the csp algorithm po-

tentially good local structures. Many current algorithms use a purely random sample,

which can lead to structures corresponding to the same global structure, for instance by

not accounting for equivalence under cyclic shifts. Additionally, by selecting a diverse

starting population, the algorithms have a greater degree of information allowing enabling

better decisions to be made regarding the global composition. Figures 5.4 and 5.5 provide

an example of using the k-centre problem for Parikh vectors to provide a set of starting

structures for the MC-EMMA system.

The case of directly solving csp is more involved. There are two possible high level

directions that the k-centre approach can be used for solving csp. The first of these is the

“pure” version, in which the goal is to choose a set of centres such that the optimal solution

is close to one of the centres. The idea in this case would be to first calculate the energy

based on the unit cells explicitly represented by the samples, then to use a more powerful

technique such as energy relaxation on a small number of good structures to determine the

global optimal. Energy relaxation can be thought of as determining the local minimum

that can be reached by adjusting the positions ions from some fixed unit cell through a

series of small moves. While this technique is highly powerful, it is very computationally

expensive, meaning that it is best used sparingly.

A second more computational approach is to iteratively take samples from progressively

smaller sets. This can be thought of as “zooming in” on good potential structures. The

high level idea behind this approach is to take a comparatively small number of initial

samples, followed by choosing a second set of samples close to the centres with a low

energy. The motivation behind this approach would be to attempt to avoid costly energy

relaxation calculations while still being able to find the global minimum.
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Chemical Formula: 4 · (Y + 2 ·B + 2 · C + 5 ·O + 13 · Fe)

Layers:

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

N1

N2

N3

N4

N5

0 · Y, 4 ·B, 0 · C, 0 ·O, 4 · Fe
0 · Y, 0 ·B, 4 · C, 0 ·O, 4 · Fe
4 · Y, 0 ·B, 0 · C, 0 ·O, 0 · Fe
4 · Y, 0 ·B, 0 · C, 0 ·O, 4 · Fe
2 · Y, 0 ·B, 2 · C, 0 ·O, 4 · Fe
1 · Y, 0 ·B, 3 · C, 0 ·O, 4 · Fe
3 · Y, 0 ·B, 1 · C, 0 ·O, 4 · Fe
2 · Y, 0 ·B, 2 · C, 0 ·O, 0 · Fe
1 · Y, 0 ·B, 3 · C, 0 ·O, 0 · Fe
3 · Y, 0 ·B, 1 · C, 0 ·O, 0 · Fe

0 · Y, 0 ·B, 0 · C, 4 ·O, 8 · Fe
0 · Y, 0 ·B, 0 · C, 4 ·O, 4 · Fe
0 · Y, 0 ·B, 0 · C, 4 ·O, 4 · Fe
0 · Y, 0 ·B, 0 · C, 4 ·O, 4 · Fe
0 · Y, 0 ·B, 0 · C, 4 ·O, 4 · Fe

Input

Figure 5.4: An example of the input for the MC-EMMA model of csp. The input consists
of a chemical formula (top) and set of precomputed three dimensional layers with either a
positive charge (labelled P1 to P10) or negative charge (labelled N1 to N5). By satisfying
the equation, the charge of the global structure will be 0. Note that despite N2, N3, N4

and N5 having the same chemical formula, each layer will represent a different placement
of the ions, leading to different possibilities of the global composition.
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Centre Necklace Parikh Vector
1 P1N1P1N1P5N1P7N2P7N2 (2, 0, 0, 0, 1, 0, 2, 0, 0, 0, 3, 2, 0, 0, 0)
2 P1P1P2P5P5N1N1N1N2N2 (2, 1, 0, 0, 2, 0, 0, 0, 0, 0, 3, 2, 0, 0, 0)
3 P1P7N1P8N1P7P1N1N2N1 (2, 0, 0, 0, 0, 0, 2, 1, 0, 0, 4, 1, 0, 0, 0)
4 P1P5N1P2N1P1N1P5N1N4 (2, 1, 0, 0, 1, 0, 0, 1, 0, 0, 4, 0, 0, 1, 0)
5 P1N1P1N1P2N1P8N1P8N1 (2, 1, 0, 0, 0, 0, 0, 2, 0, 0, 5, 0, 0, 0, 0)
6 P1P9P7N1P1N5N1P5N1N1 (2, 0, 0, 0, 1, 0, 1, 0, 1, 0, 4, 0, 0, 0, 1)
7 P1P8P9N1N1N1P1P7N1N1 (2, 0, 0, 0, 0, 0, 1, 1, 1, 0, 5, 0, 0, 0, 0)
8 P1N1P5N1P1N1P9P9N1N1 (2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 5, 0, 0, 0, 0)
9 P1P5P1P7P7N1N1N1N3N3 (2, 0, 0, 0, 1, 0, 2, 0, 0, 0, 3, 0, 2, 0, 0)
10 P1P1N5N4P2P5P5N1N1N1 (2, 1, 0, 0, 2, 0, 0, 0, 0, 0, 3, 0, 0, 1, 1)

Figure 5.5: An example of the k-centre problem for the MC-EMMA setting using the input
from Figure 5.4. In this case each layer from the input is represented by some symbol.
The output is a set of 10 centres over this new alphabet represented by necklaces each
with a unique Parikh vector such that the sum of elements equals to goal formula. By
choosing both diversity in terms of Parikh vectors and local structures, a larger number
of local substructures can be investigated than would be possible via a random sampling.
These necklaces can be transformed into crystal structures by replacing each symbol with
the corresponding precomputed slice.



Chapter 6

Ranking and Unranking Bracelets

Following the k-centre algorithms provided in Chapter 5, it is necessary to show how to

rank bracelets in polynomial time. As the problem of ranking bracelets is a major challenge

in its own right, it is worth laying out a road map for the remainder of this chapter. Section

6.1 provides a high level overview for the main result of this chapter, namely the approach

taken to rank bracelets. Section 6.2 provides some key preliminary results. Sections 6.3

and 6.4 give auxiliary results on ranking palindromic and enclosing bracelets, as defined in

Chapter 2. Finally Section 6.5 summarises the main contribution from this chapter.

6.1 Ranking Bracelets

In this section we present the main result of this chapter: the first efficient algorithm for

ranking bracelets. In what follows, we tacitly assume that we are ranking a word v̄ of

length n. The time-complexity of the ranking algorithm is O(q2 ·n4), where q is the size of

the alphabet and n is the length of the considered bracelets. The key part of the algorithm

is to compute the rank of the word v̄ with respect to the set of bracelets by finding three

other ranks: the rank over all necklaces, the rank over palindromic necklaces, and the rank

over enclosing apalindromic necklaces.

A bracelet can correspond to two apalindromic necklaces, or to exactly one palindromic

necklace. If a bracelet b̂ corresponds to two necklaces l̃b and r̃b, then it is important to

take into account the lexicographical positions of these two necklaces l̃b and r̃b with respect

to a given word v̄. There are three possibilities: l̃b and r̃b could be less than v̄; l̃b and r̃b

encloses v̄, e.g. l̃b < v̄ < r̃b, or both of necklaces l̃b and r̃b are greater than v̄. This is

94
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visualised in Figure 6.1. Therefore the number of bracelets smaller than a given word w

can be calculated by adding the number of palindromic necklaces less than v̄, enclosing

bracelets smaller than v̄ and half of all other apalindromic and non-enclosing necklaces

smaller than v̄. Let us define the following notation is used for the rank of v̄ ∈ Σn for sets

of bracelets and necklaces.

◦ RN(v̄) denotes the rank of v̄ with respect to the set of necklaces of length n over Σ.

◦ RP (v̄) denotes the rank of v̄ with respect to the set of palindromic necklaces over Σ.

◦ RB(v̄) denotes the rank of v̄ with respect to the set of bracelets of length n over Σ.

◦ RE(v̄) denotes the rank of v̄ with respect to the set of bracelets enclosing v̄.

Bracelets

Necklaces

aaa aab aac aad abb abc abd acc

aaa aab aac aad abb abc abd accacb

acd

acd adb adc add

add

Figure 6.1: In this example the top line represents the set of bracelets and the bottom line
the set of necklaces, with arrows indicated which necklace corresponds to which bracelet.
Assuming we wish to rank the word acc (highlighted), abc and acb are apalindromic neck-
laces smaller than acc, while abd encloses acc. All other necklaces are palindromic.

In Lemma 12 below, we show that RB(v̄) can be expressed via RN(v̄), RP (v̄) and RE(v̄).

The problem of computing RN(v̄) has been solved in quadratic time [92], so the goal of

the chapter is to design efficient procedures for computing RP (v̄) and RE(v̄).

Lemma 12. The rank of a word v̄ ∈ Σn with respect to the set of bracelets of length n

over the alphabet Σ is given by RB(v̄) = 1
2 (RN(v̄) +RP (v̄) +RE(v̄)).

Proof. Simply dividing the number of necklaces by 2 undercounts the number of bracelets,

while doing nothing overcounts the number of bracelets. Therefore to get the correct

number of bracelets, those bracelets corresponding to only 1 necklace must be accounted

for. A bracelet â corresponds to 2 necklaces smaller than v̄ if and only if â does not

enclose v̄ and â is apalindromic. Therefore the number of bracelets corresponding to 2

necklaces is 1
2 (RN(v̄)−RP (v̄)−RE(v̄)). The number of bracelets enclosing v̄ is equal to

RE(v̄). The number of bracelets corresponding to palindromic necklaces is equal to RP (v̄).
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Therefore the total number of bracelets is 1
2 (RN(v̄)−RP (v̄)−RE(v̄))+RP (v̄)+RE(v̄) =

1
2 (RN(v̄) +RP (v̄) +RE(v̄)).

Lemma 12 provides the basis for ranking bracelets. Theorem 14 uses Lemma 12 to get

the complexity of the ranking process. The remainder of this chapter proves Theorem

14, starting with the complexity of ranking among palindromic necklaces in Section 6.3

followed by the complexity of ranking enclosing bracelets in Section 6.4.

Theorem 14. Given a word v̄ ∈ Σn, the rank of v̄ with respect to the set of bracelets of

length n over the alphabet Σ, RB(v̄), can be computed in O(q2 · n4) time.

The remainder of this chapter proves Theorem 14. For simplicity, the word v̄ is assumed to

be a necklace representation. It is well established how to find the lexicographically largest

necklace smaller than or equal to some given word. Such a word can be found in quadratic

time using an algorithm form [92]. Note that the number of necklaces less than or equal to

v̄ corresponds to the number of necklaces less than or equal to the lexicographically largest

necklace smaller than v̄. From Lemma 12 it follows that to rank v̄ with respect to the set of

bracelets, it is sufficient to rank v̄ with respect to the set of necklaces, palindromic necklaces,

and enclosing bracelets. The rank with respect to the set of palindromic necklaces, RP (v̄)

can be computed in O(q ·n3) using the techniques given in Theorem 16 in Section 6.3. The

rank with respect to the set of enclosing bracelets, RE(v̄) can be computed in O(q2 · n4)

as shown in Theorem 17 in Section 6.4. As each of these steps can be done independently

of each other, the total complexity is O(q2 · n4).

This complexity bound is a significant improvement over the naive method of enumer-

ating all bracelets, requiring exponential time in the worst case. New intuition is provided

to rank the palindromic and enclosing cases. The main source of complexity for the prob-

lem of ranking comes from having to consider the lexicographic order of the word under

reflection. New combinatorial results and algorithms are needed to count the bracelets in

these cases.

Before showing in detail the algorithmic results that allow bracelets to be efficiently

ranked, it is useful to discus the high level ideas. Lemma 12 shows our approach to ranking

bracelets by dividing the problem into the problems of ranking necklaces, palindromic

necklaces and enclosing bracelets. For both palindromic necklaces and enclosing bracelets,

we derive a canonical form using the combinatorial properties of these objects.

Using these canonical forms, the number of necklaces smaller than v̄ is counted in an

iterative manner. In the palindromic case, this is done by counting the number of necklaces
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greater than v̄, and subtracting this from the total number of palindromic necklaces. In

the enclosing case, this is done by directly counting the number of necklaces smaller than

v̄. For both cases, the counting is done by way of a tree comprised of the set of all prefixes

of words of the canonical form. By partitioning the internal vertices of the trees based on

the number of children of the vertices, the number of words of the canonical form may be

derived in an efficient manner, forgoing the need to explicitly generate the tree. This allows

the size of these partitions to be computed through a dynamic programming approach. It

follows from these partitions how to count the number of leaf nodes, corresponding to the

canonical form.

Theorem 15. The zth bracelet of length n over Σ can be computed in O(n5 · q2 · log(q)).

Proof. The unranking process is done through a binary search using the ranking algorithm

as a black box. Let ᾱ be a word which is the bracelet representation of the zth bracelet. The

value of ᾱ is determined iteratively, starting with the first symbol and working forwards.

The first symbol of ᾱ is determined preforming a binary search over ᾱ. For x ∈ ᾱ, the words

x1n−1 and xqn−1 are generated, where 1 is the smallest symbol in Σ and q the largest. If

RB(x1n−1) ≤ z ≤ RB(xqn−1), then the first symbol of ᾱ is x, otherwise the new value of x

is chosen by standard binary search, being greater than x if z > RB(xqn−1) and less than

x if z < RB(x1n−1). The ith symbol of ᾱ is done in a similar manner, generating the words

ᾱ[1,i−1]x1n−i−1 and ᾱ[1,i−1]xq
n−i−1, converting ᾱ[1,i−1]x1n−i−1 to a necklace representation

using Algorithm 1 due to Sawada and Williams [92]. Repeating this for all n symbols

leaves ᾱ as being the bracelet representation of the zth smallest bracelet, i.e. the bracelet

with z − 1 smaller bracelets. As the binary search takes log(q) operations for each of the

n symbols, requiring O(q2 · n4) time to rank for each symbol at each position. Therefore

the total complexity is O(n5 · q2 · log(q)) time.

6.2 Bounding Subwords

For both the palindromic and enclosing cases the number of necklaces smaller than v̄ ∈ Σn

is computed by iteratively counting the number of words of length n for which no subword

is smaller than v̄. The set of such words, denoted by Sn, is analysed iteratively as well,

since it can have an exponential size. In order to relate Si to Si+1, we split Si into parts

using the positions of length i subwords of v̄ with respect to the lexicographic order on
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Si. Informally, every w̄ ∈ Si can be associated with the unique lower bound from S(v̄, i),

which is used to identify the parts leading us to the following definition.

Definition 24. Let w̄, v̄ ∈ Σ∗ where |w̄| ≤ |v̄|. The word w̄ is bounded (resp. strictly

bounded) by s̄ v|w̄| v̄, if s̄ ≤ w̄ (resp. s̄ < w̄) and there is no ū v|w̄| v̄ such that s̄ < ū ≤ w̄.

The aforementioned parts Si(s̄) contain all words w̄ ∈ Si such that s̄ v|w̄| v̄. The key

observation is that words of the form xw̄ for all w̄ ∈ Si and some fixed symbol x ∈ Σ

belong to the same set Si+1(s̄′), where s̄′ v v̄. The same is true for words of the form w̄x.

Thus, we can compute the corresponding s̄′ for all pairs of s̄ and x in order to derive sizes

of Si+1(s̄′). Moreover, this relation between s̄, x, and s̄′ is independent of i allowing us

to store this information in two n2 × k arrays XW and WX. Both arrays are indexed by

the words s̄ v v̄ and characters x ∈ Σ. Given a word w̄ strictly bounded by s̄, XW [s̄, x]

contains the word s̄′ v|s̄|+1 v̄ strictly bounding xw̄. Similarly, WX[s̄, x] contains the word

s̄′ v|s̄|+1 v̄ strictly bounding w̄x. By precomputing these arrays, the cost of determining

these words can be avoided during the ranking process. In order to compute these arrays,

the following technical lemmas are needed.

Lemma 13. Let w̄, v̄ ∈ Σ∗, |w̄| < |v̄|, let x ∈ Σ and let s̄ v|w̄| v̄ be the subword of v̄ that

bounds w̄. The word s̄′ v v̄ bounds xw̄ if and only if s̄′ bounds xs̄.

Proof. Let s̄′ v v̄ bound xw̄. Since s̄ ≤ w̄, we have xs̄ ≤ xw̄. For the sake of contradiction

assume that xs̄ is bounded by ū < s̄′. If ū1 < x then s̄′1 = x as for any smaller value of

s̄′1, ū would not bound xw̄. Under this assumption s̄ < s̄′[2,|s̄′|] ≤ w̄, in which case s̄′[2,|s̄′|]
would bound w̄, contradicting this assumption. If ū1 = x, then again s̄ < s̄′[2,|s̄′|] < w̄, in

which case s̄′[2,|s̄′|] bounds w̄ contradicting the original assumption that s̄ bounds w̄.

In the other direction, let s̄′ bound xs̄. If s̄′ does not bound xw̄ then there must exist

some word ū bounding xw̄. As xs̄ < ū < xw̄, ū1 = x hence ū = xū′. Therefore ū′ bounds

w̄, contradicting our original assumption. Hence s̄′ bounds xw̄ if and only if s̄′ bounds xs̄

where s̄ bounds w̄.

Lemma 14. Let w̄, v̄ ∈ Σ∗, let x ∈ Σ and let s̄ v v̄ be the subword of v̄ that bounds w̄.

Let s̄′ v v̄ bound w̄x. Either s̄′ bounds s̄x, or s̄′ = s̄y for y > x.

Proof. Let ū bound s̄x. If ū 6= s̄′ then as w̄x ≥ s̄′ > s̄x ≥ ū, if s̄′[1,|¯̄s|] > s̄ then s̄′[1,|¯̄s|] must

bound w̄, contradicting the assumption that s̄ bounds w̄. Therefore the only possible value

of s̄′ > s̄x is when s̄′ = s̄y for some y > x.



Chapter 6. Ranking and Unranking Bracelets 99

Lemma 15. Let w̄, ū, v̄ ∈ Σ∗, let x ∈ Σ and let s̄ v v̄ be the subword of v̄ that strictly

bounds both w̄ and ū. The word s̄′ v v̄ which bounds w̄x also bounds ūx.

Proof. For the sake of contradiction assume ūx is bounded by t̄. This implies that s̄′ <

w̄x < t̄ ≤ ūx. Following Lemma 14, t̄ = s̄y for y > x. However, as w̄ > s̄, t̄ must be less

than w̄ and hence t̄ would be a better bound for w̄.

Proposition 9. Let v̄ ∈ Σn. The array XW [s̄ v v̄, x ∈ Σ] such that XW [s̄, x] strictly

bounds xw̄ for every w̄ strictly bounded by s̄ can be computed in time O(q · n3 · log(n)).

Proof. Given some pair of arguments s̄ v v̄, x ∈ Σ, the word bounding xs̄ can be found

through a binary search on S(v̄, |s̄|+1). As each comparison takes at most O(n) operations,

and at most log(n) comparisons are needed, each entry can be computed in O(n log(n))

operations. As there are O(n2) subwords of v̄ and q characters in Σ, there is at most

O(q · n3 log(n)) operations needed.

Proposition 10. Let v̄ ∈ Σn. The array WX[s̄ v v̄, x ∈ Σ], such that WX[s̄, x] strictly

bounds w̄x for every w̄ strictly bounded by s̄, can be computed in O(q · n3 · log(n)) time.

Proof. For some pair pair of arguments s̄ v v̄, x ∈ Σ, let w̄ be the smallest word greater

than s̄. The word bounding w̄x can be found through a binary search of S(v̄, |s̄| + 1).

Following Lemma 15, given any word ū strictly bounded by s̄, ūx is also bounded by

the same word bounding w̄x. As in Proposition 9, each comparison takes at most O(n)

operations, with the search requiring at most log(n) comparisons. As there are n2 · q
arguments, at most O(q ·n3 log(n)) operations are needed to compute every value of WX.

6.3 Computing the Rank RP (v̄)

To rank palindromic necklaces, it is crucial to analyse their combinatorial properties. This

section focuses on providing results on determining unique words representing palindromic

necklaces. We study two cases depending on whether the length n of a palindromic neck-

lace is even or odd. The reason for this division can be seen by considering examples of

palindromic necklaces. If equivalence under the rotation operation is not taken into ac-

count, then a word is palindromic if w̄ = w̄R. If the length n of w̄ is odd, then if w̄ = w̄R,

w̄ can be written as φ̄xφ̄R, where φ̄ ∈ Σ(n−1)/2 and x ∈ Σ. For example, the word aaabaaa
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is equal to φ̄xφ̄R, where φ̄ = aaa and x = b. If the length n of w is even, then if w̄ = w̄R,

w̄ can be written as ψ̄ψ̄R, where ψ̄ ∈ Σn/2. For example the word aabbaa is equal to ψ̄ψ̄R,

where ψ̄ = aab.

Once rotations are taken into account, the characterisation of palindromic necklaces

becomes more difficult. It is clear that any necklace ã that contains a word of the form φ̄xφ̄R

or φ̄φ̄R is palindromic. However this check does not capture every palindromic necklace.

Let us take, for example, the necklace ã = ababab, which contains two words ababab and

bababa. While ababab can neither be written as φ̄xφ̄R nor φ̄φ̄R, it is still palindromic

as 〈abababR〉 = 〈bababa〉 = ababab. Therefore a more extensive test is required. As the

structure of palindromic words without rotation is different depending on the length being

either odd or even, it is reasonable to split the problem of determining the structure of

palindromic necklaces into the cases of odd and even length.

The number of palindromic necklaces are counted by computing the number of these

characterisations. This is done by constructing trees containing every prefix of these char-

acterisations. As each vertex corresponds to the prefix of a word, the leaf nodes of these

trees correspond to the words in the characterisations. By partitioning the tree in an in-

telligent manner, the number of leaf nodes and therefore number of these characterisations

can be computed. In the odd case this corresponds directly to the number of palindromic

necklaces, while in the even case a small transformation of these sets is needed.

6.3.1 Odd Length Palindromic Necklaces

Starting with the odd-length case, Proposition 11 shows that every palindromic necklace of

odd length contains exactly one word that can be written as φ̄xφ̄R where φ̄ ∈ Σ(n−1)/2

and x ∈ Σ. This fact is used to rank the number of bracelets by constructing a tree

representing every prefix of a word of the form φ̄xφ̄R that belongs to a bracelet greater

than v̄.

Proposition 11. A necklace w̃ of odd length n is palindromic if and only if there exists

exactly one word ū = φ̄xφ̄R such that ū ∈ w̃, where φ̄ ∈ Σ(n−1)/2 and x ∈ Σ.

Proof. Let v̄ ∈ w̃. If v̄ is of the form φ̄xφ̄R, then clearly we have that v̄ = v̄R. In the

other direction, for the sake of contradiction assume w̃ is a palindromic necklace of odd

length n such that no word v̄ ∈ w̃ is of the form φ̄xφ̄R. Note that the cardinality of w̃ is

equal the period of the words in w̃. As the length of the words in w̃ is odd, so to must
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be the length of the period. Given a word v̄ ∈ w̃, if v̄ 6= v̄R then the size of w̃ is equal to

|w̃ \ {v̄, v̄R}| + 2. As the size of w̃ is odd, there must be at least one word v̄ ∈ w̃ where

v̄ = v̄R. For v̄ = v̄R, v̄1 = v̄n, v̄2 = v̄n−1, . . . , v̄n−1
2

= v̄n+3
2

. Therefore this word can be

expressed as φ̄xφ̄R where φ̄ = v̄[1,(n−1)/2] and x = v̄(n+1)/2.

For the remainder of this proof ūi is used to denote the character at position (i mod n)+

1 in the word ū. For the sake of contradiction, assume that there exists some pair of words

ū, v̄ ∈ w̃ such that ū 6= v̄ and both ū = ūR and v̄ = v̄R. As both ū and v̄ belong to the same

necklace class, there must exist some rotation r such that 〈ū〉r = v̄. Further, as v̄ = v̄R,

〈ū〉r = v̄R. Therefore, ūr+i = v̄i, ūn−1−r+i = v̄i, ūr+i = v̄n−i−1, and ūn−1−r+i = v̄n−i−1.

Further ūi = ūn−i+1 and v̄i = v̄n−i+1. Therefore v̄i = ūr+i = ūn−r−i+1 = v̄2n−2r−i−1 =

v̄n−(2n−2r−i−1)−1 = ū3r−n+i = ū3r+i. Therefore ūi = ū2r+i implying that v̄ = 〈v̄〉2r.
Therefore the period of ū must be equal to some common divisor of 2r and n. As the

length of n is odd, the greatest divisor equals to GCD(r, n). As such the period must

be a factor of r, meaning that ū = 〈ū〉r = v̄, contradicting the assumption that ū 6= v̄.

Therefore there is exactly one word in w̃ of the form φ̄xφ̄R.

Corollary 5. The number of palindromic necklaces of odd length n over Σ equals q(n+1)/2.

Proof. It follows from Proposition 11 that for every palindromic necklace w̃ of length n,

there exists exactly one word φ̄ ∈ Σ∗ and symbol x ∈ Σ such that φ̄xφ̄R. Hence, the

number of palindromic necklaces equals the number of words of the form φ̄xφ̄R with length

n. Note that for the length of φ̄xφ̄R to be n, the length of φ̄ must be n−1
2 . Therefore the

number of values of φ̄ is q(n−1)/2. As there are q values of x, the number of values of φ̄xφ̄R

is q(n+1)/2.

The problem now becomes to rank a word v̄ with respect to the odd length palindromic

necklaces utilising their combinatorial properties. Let v̄ ∈ Σn be a word of odd length n.

We define the set PO(v̄), where PO stands for palindromic odd length. The set PO(v̄)

contains one word representing each palindromic bracelet of odd length n that is greater

than v̄.

PO(v̄) :=
{
w̄ ∈ Σn : w̄ = φ̄xφ̄R, where 〈w̄〉 > v̄, φ̄ ∈ Σ(n−1)/2, x ∈ Σ

}
.

As each word corresponds to a unique palindromic necklace of length n greater than v̄, and

every palindromic necklace greater than v̄ corresponds to a word in PO(v̄), the number



102 Duncan Adamson

∅

a b ..... k

aa ab ak... ba bk... ka kk...

..........................................................

...

PO(v, i, j, s)

PO(v, i+ 1, h1, u1) PO(v, i+ 1, h2, u2)

a b k

a b k a k a k

a k

x1 x2

........................................................................................

Layer i

ai ai−1k ki

PO(v)

Layer n+1
2

X

φφR w̃

w̃1 w̃1

i = 1

i = 2

w̃2 w̃2

i = i

w̃i
w̃i

Figure 6.2: (Left) The relationship between PO(v̄, i, j, s̄) with the tree T O(v̄) and PO(v̄).
(right) Example of the order for which characters are assigned. Note that at each step the
choices for the symbol w̃i is constrained in the no subword of w̃[1,i]w̃

R
[1,i] is greater than or

equal to v̄.

of palindromic necklaces greater than v̄ is equal to |PO(v̄)|. Using this set the number

of necklaces less than v̄ can be counted by subtracting the size of PO(v̄) from the total

number of odd length palindromic necklaces, equal to q(n+1)/2 (Corollary 5).

High level idea for the Odd Case. Here we provide a high level idea for the approach

we follow for computing PO(v̄). Let v̄ have a length n. Since PO(v̄) only contains words

of the form φ̄xφ̄R, where φ̄ ∈ Σ(n−1)/2 and x ∈ Σ, we have that w̄i = w̄n−i for every

w̄ ∈ PO(v̄).As the lexicographically smallest rotation of every w̄ ∈ PO(v̄) must be greater

than v̄, it follows that any word rotation of w̄ must be greater than v̄ and therefore every

subword of w̄ must also be greater than or equal to the prefix of v̄ of the same length.

This property is used to compute the size of PO(v̄) by iteratively considering the set

of prefixes of each word in PO(v̄) in increasing length representing them with the tree

T O(v̄). As generating T O(v̄) directly would require an exponential number of operations,

a more sophisticated approach is needed for the calculation of |PO(v̄)| based on partial

information.

As the tree T O(v̄) is a tree of prefixes, vertices in T O(v̄) are referred to by the prefix

they represent. So ū ∈ T O(v̄) refers to the unique vertex in T O(v̄) representing ū. The

root vertex of T O(v̄) corresponds to the empty word. Every other vertex ū ∈ T O(v̄)

corresponds to a word of length i, where i is the distance between ū and the root vertex.
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Given two vertices p̄, c̄ ∈ T O(v̄), p̄ is the parent vertex of a child vertex c̄ if and only if

c̄ = p̄x for some symbol x ∈ Σ. The ith layer of T O(v̄) refers to all representing words

of length i in T O(v̄) . The size of PO(v̄) is equivalent to the number of unique prefixes

of length n+1
2 of words of the palindromic form φ̄xφ̄R in PO(v̄). This set of prefixes

corresponds to the vertices in the layer n+1
2 of T O(v̄). Therefore the maximum depth of

T O(v̄) is n+1
2 .

To speed up computation, each layer of T O(v̄) is partitioned into sets that allow the

size of PO(v̄) to be efficiently computed. This partition is chosen such that the size of the

sets in layer i + 1 can be easily derived from the size of the sets in layer i. As these sets

are tied to the tree structure, the obvious property to use is the number of children each

vertex has. As each vertex ū ∈ T O(v̄) represents a prefix of some word w̄ ∈ PO(v̄), the

number of children of ū is the number of symbols x ∈ Σ such that ūx is a prefix of some

word in PO(v̄). Recall that every word in w̄ ∈ PO(v̄) has the form φ̄xφ̄R, and that there

is no subword of w̄ that is less than v̄. Therefore if ū ∈ T O(v̄), there must be no subword

of ūRū that is less than v̄. Hence the number of children of ū is the number of symbols

x ∈ Σ such that no subword of xūRūx is less than the prefix of v̄ of the same length. As

ūRū has no subword less than v̄, xūRūx has a subword that is less than v̄ only if either

(1) xūRūx < v̄ or (2) there exists some suffix of length j such that (ūRū)[2i−j,2i] = v̄[1,j]

and x < v̄j+1. For the first condition, let s̄ v2i v̄. By the definition of strictly bounding

subwords (Definition 24), xūRūx < v̄ if and only if xs̄x < v̄. Note that this ignores any

word ū where ūRū v v̄. The restriction to strictly bounded words is to avoid the added

complexity caused by Proposition 9, where the word that bounds xs̄x might not be the

word that bounds xūRūx. For the second property, let j be the length of the longest suffix

of ūRū that is a prefix of v̄. From Lemma 1 due to Sawada and Williams [92], there is

some suffix of ūRūx that is smaller than v̄ if and only if x < v̄j+1. The ith layer of T O(v̄)

is partitioned into n2 sets PO(v̄, i, j, s̄), for every i ∈ [n+1
2 ], j ∈ [2i] and s̄ v2i v̄.

Definition 25. Let i ∈ [n+1
2 ], j ∈ [2i] and s̄ v2i v̄. The set PO(v̄, i, j, s̄) contains every

prefix ū ∈ T O(v̄) of length i where (1) the longest suffix of ūR[1,i]ū[1,i] which is a prefix of v̄

has a length of j and (2) The word ūR[1,i]ū[1,i] is strictly bounded by s̄.

An overview of the properties used by PO(v̄, i, j, s̄) is given in Figures 6.2 and 6.3. It

follows from the earlier observations that each vertex in PO(v̄, i, j, s̄) has the same number

of children. Lemma 16 strengthens this observation, showing that given ā, b̄ ∈ PO(v̄, i, j, s̄),

āx ∈ PO(v̄, i+ 1, j′, s̄′) if and only if b̄x ∈ PO(v̄, i+ 1, j′, s̄′).
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Figure 6.3: Visual representation of the properties of w̄R[1,i]w̄[1,i] ∈ PO(v̄, i, j, s̄).

The remainder of this section establishes how to count the size of PO(v̄, i, j, s̄) and the

number of children vertices for each vertex in PO(v̄, i, j, s̄). The first step is to formally

prove that all vertices in PO(v̄, i, j, s̄) have the same number of children vertices. This is

shown in Lemma 16 by proving that given two vertices ā, b̄ ∈ PO(v̄, i, j, s̄), if the vertex

ā′ = āx for x ∈ Σ belongs to the set PO(v̄, i+ 1, j′, s̄′), so to does b̄′ = b̄x.

Lemma 16. Let ā, b̄ ∈ PO(v̄, i, j, s̄) and let x ∈ Σ. If the vertex ā′ = āx belongs to

PO(v̄, i + 1, j′, s̄′), the vertex b̄′ = b̄x also belongs to PO(v̄, i + 1, j′, s̄′). Furthermore the

value of j′ and s̄′ can be computed in constant time from the values of j, s̄ and x.

Proof. By the definition of the set PO(v̄, i, j, s̄), the last j symbols of āRā and b̄Rb̄ are

equal to v̄[1,j′]. Therefore if j′ > 0, x must be equal to v̄j+1, satisfying this observation.

On the other hand, if j′ = 0 then x must be greater than v̄j+1. Following Lemmas 15 and

13, if s̄′ bounds xāRāx and s̄ bounds both āRā and b̄, then s̄′ also bounds xb̄Rb̄x. Hence b̄′

must also belong to PO(v̄, i+ 1, j′, s̄′).

To compute the value of j′ and s̄′ in constant time, assume that the arrays XW and

WX as defined in Section 6.2. Note that if x < v̄j+1, there is no such value of j′ or s̄′ as

the suffix of xāRāx of length j+ 1 is smaller than v̄, contradicting the definition of the set.

If x = v̄j+1 then the value of j′ must be j + 1. Otherwise, the value of j′ is 0 following

Lemma 1 of Sawada and Williams [92]. The value s̄′ can be derived using WX and XW

by finding the word ū = WX[s̄, x] that bounds s̄x, then s̄′ = XW [ū, x] that bounds xū.

Therefore the value of j′ and s̄′ can be computed in constant time.

Computing the size of PO(v̄, i, j′, s̄′). Lemma 16, provides enough information to

compute the size of PO(v̄, i, j′, s̄′) once the size of PO(v̄, i− 1, j, s̄) has been computed for

each value of j ∈ [2(i− 1)] and s̄ ∈ S(v̄, 2(i− 1)). At a high level, the idea is to create an

array, SizePO, storing the size of the PO(v̄, i, j′, s̄′) for every value of i ∈ [n−1
2 ], j ∈ [2i]

and s̄ v2i v̄. For simplicity, let the value of SizePO[i, j, s̄] be the size of |PO(v̄, i, j, s̄)|.
Lemma 17 formally provides the method of computing SizePO[i, j, s̄] for every j ∈ [2i]

and s̄ v2i v̄ once SizePO[i − 1, j′, s̄′] has been computed for every j′ ∈ [2i − 2] and
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s̄ v2i−2 v̄. Observe that each vertex a ∈ PO(v̄, i, j′, s̄′) represents a prefix ā′x where ā′

is either in PO(v̄, i − 1, j, s̄), for some value of j and s̄, or ā′ v v̄. Using this, the high

level idea is to derive the values of j′ and s̄′ for each j ∈ [2(i − 1)], s̄ ∈ S(v̄, 2(i − 1))

and x ∈ Σ. Once the values j′ and s̄′ have been derived, the value of SizePO[i, j′, s̄′] is

increased by the size of PO(v̄, i−1, j, s̄). Repeating this for every value of j, s̄ and x leaves

the value of SizePO[i, j′, s̄′] as the number of vertices in PO(v̄, i, j′, s̄′) representing words

of the form āx where ā 6v v̄. As each set PO(v̄, i, j, s̄) may have children in at most q

sets PO(v̄, i + 1, j′, s̄′), the number of vertices in PO(v̄, i + 1, j′, s̄′) with a parent vertex

in PO(v̄, i, j, s̄) can be computed in O(q · n2) by looking at every argument of j ∈ [2i] and

s̄ v2i v̄.

To account for the vertices in PO(v̄, i, j′, s̄′) of the form b̄x where b̄Rb̄ v v̄, a similar

process is applied to each pair s̄ ∈ S(v̄, 2(i − 1)) and x ∈ Σ. For each pair, the values s̄′

and j′ are derived in the same manner as Lemma 16 utilising the tables XW and WX.

Once derived, the value of SizePO[i, j′, s̄′] is increased by one, to account for the vertex

s̄x. As the values of j′ and s̄′ can be computed in O(n) time from the value of x and s̄,

the number of vertices in PO(v̄, i+ 1, j′, s̄′) where the parent vertex is a subword of v̄ can

be computed in O(q · n2) time.

Lemma 17. Given the size of PO(v̄, i, j, s̄) for i ∈
[
n−3

2

]
and every j ∈ [2i], s̄ v2i v̄, the

size of PO(v̄, i + 1, j′, s̄′) for every j′ ∈ [2i + 2], s̄′ v2i+2 v̄ can be computed in O(q · n2)

time.

Proof. Assume that WX and XW have been precomputed. Further assume that the

array SizePO has be initialised such that SizePO[i, j, s̄] = |PO(v̄, i, j, s̄)| for every value

of j ∈ [2i] and s̄ ∈ S(v̄, 2i), and SizePO[i + 1, j, s̄] = 0 for every j′ ∈ [2i + 2], and

s̄′ ∈ S(v̄, 2i).

The first step is to count the number of vertices in PO(v̄, i + 1, j′, s̄′) representing

words of the form āx where ā 6v v̄. This is done by checking each j ∈ [2i], s̄ ∈ S(v̄, 2i),

and x ∈ Σ. For each j, s̄ and x, the values j′ and s̄′ are derived in constant time as in

Lemma 16. Following Lemma 16, every vertex ā ∈ PO(v̄, i, j, s̄) has some child vertex in

ā′ ∈ PO(v̄, i + 1, j′, s̄′) such that the last symbol of the word ā′ is equal to x. Therefore

the value of SizePO[i+ 1, j′, s̄′] is increased by the value of SizePO[i, j, s̄]. Repeating this

for every value of j, s̄ and x leaves the value of SizePO[i+ 1, j′, s̄′] equal to the number of

vertices in PO(v̄, i+ 1, j′, s̄′) of the form āx where ā 6v v̄. As there are n possible value of

both j and s̄, and q values of x, this process takes O(n2 · q) operations.



106 Duncan Adamson

To compute the number vertices in PO(v̄, i + 1, j′, s̄′) of the form b̄x where b̄ v v̄, a

similar process is applied to each pair s̄ ∈ S(v̄, 2i) and x ∈ Σ. Formally, for each pair of s̄

and x, the first step is to check that s̄ = s̄R. This can be done in linear time by comparing

the two strings. This check ensures that new word is palindromic. The second check is

that xs̄x 6⊆ v̄. This is to ensure that the new word is not counted in the next layer. This

can be done by finding the word s̄′ in the same manner as in Lemma 16, and checking if

the word ū′ preceding s̄′ in the ordered set S(s̄, 2i+ 2) is equal to xs̄x. Let j be the length

of the longest suffix of s̄ that is a prefix of v̄. The value of j can be found in linear time by

using a simple pattern matching algorithm on s̄ and recording the final state. The value

of j′ can be found form the value of j and x using Lemma 16 in constant time. Once j′

and s̄′ have been derived, the value of SizePO[i+ 1, j′, s̄′] can be increased by 1. As there

are n possible values of s̄, q possible values of x, and at most O(n) operations are required

for each pair, this process takes O(n2 · q) operations. Therefore the total complexity is

O(n2 · q).

Once the size of PO(v̄, i, j, s̄) has been computed for every i ∈ [n−1
2 ], j ∈ [2i], s̄ ∈ S(v̄, 2i),

the final step is to compute |PO(v̄)|. The high level idea is to determine the number of

vertices in PO(v̄) are children of a vertex in PO(v̄, n−1
2 , j, s̄).The set X(v̄, j, s̄) ⊆ Σ is

introduced to help with this goal. Let X(v̄, j, s̄) contain every symbol x ∈ Σ such that

āxāR ∈ PO(v) where ā ∈ PO(v̄, n−1
2 , j, s̄). By the definition of X(v̄, j, s̄), |X(v̄, j, s̄)| ·

|PO(v̄, n−1
2 , j, s̄)| equals the number of words w̄ ∈ PO(v̄) where(w̄1 . . . w̄(n−1)/2) ∈ PO(v̄,

i, j ,s̄). Lemma 18 shows how to compute the size of X(v̄, j, s̄) in O(q · n) time.

Lemma 18. Let X(v̄, j, s̄) contain every symbol in Σ such that āxāR ∈ PO(v) where

ā ∈ PO(v̄, n−1
2 , j, s̄). The size of X(v̄, j, s̄) can be computed in O(q · n) time.

Proof. The size of X(v̄, j, s̄) can be computed in a direct manner by checking if x ∈
X(v̄, j, s̄) for each x ∈ Σ. Given some x ∈ Σ, note that if x < v̄j+1 then there exists some

rotation of 〈āxāR〉 that is smaller than v̄. Let x ≥ v̄j+1. For x to be a member of X(v̄, j, s̄)

observe that for 〈āxāR〉 to be greater than v̄, v̄[1,j]xā
Rā must be greater than v. Using the

bound given by s̄ gives 〈āxāR〉 > v̄[1,j]xs̄. Therefore if v̄[1,j]xs̄ ≥ v̄, x ∈ X(v̄, j, s̄). In the

other hand, if v̄[1,j]xs̄ < v̄, then note that s̄ < v̄[j+2,n+j]. Therefore āRā < v̄[j+2,n+j] as it

is bounded by s̄. Hence 〈āxāR〉 < v̄. Therefore, x ∈ X(v̄, j, s̄) if and only if v̄[1,j]xs̄ ≥ v̄.

As this can be checked in O(n) steps by directly comparing the two words, and there are

q values of z to check, the total complexity is O(q · n).
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Converting SizePO to |PO(v̄)|. The final step in computing PO(v̄) is to convert the

cardinality of PO(v̄, i, j, s̄) to the size of PO(v̄). Lemma 19 provides a formula for counting

the size of PO(v̄). Combining this formula with the techniques given in Lemma 17 an

algorithm for computing the size of PO(v̄) directly follows.

It follows from Lemma 16 that the number of words in PO(v̄) with a prefix in

PO
(
v̄, n−1

2 , j, s̄
)

is equal to the cardinality of PO
(
v̄, n−1

2 , j, s̄
)

multiplied by the size of

X(v̄, j, s̄). Similarly the number of words in PO(v̄) with a prefix ū of length n−1
2 where

ūRū v v̄ can be determined using X(v̄, j, ūRū). The main difference in this case is that if

ūRū = v̄[j+2,n+j], where j is the length of the longest suffix of ūRū that is a prefix of v̄, then

the number of words in PO(v̄) where ū is a prefix is 1 fewer than for the number of words

strictly bounded by ūRū, i.e. |X(v̄, J(s̄, v̄), s̄)| − 1. Lemma 19 provides the procedure to

compute |PO(v̄)|.

Lemma 19. Let J(s̄, v̄) return the length of the longest suffix of s̄ that is a prefix of v̄.

The size of PO(v̄) is equal to

∑
s̄∈S(v̄,n−1)

(
n−1∑
j=1
|X(v̄, j, s̄)| · |PO

(
v̄, n−1

2 , j, s̄
)
|

)
+


0 s̄ 6= φφR

|X(v̄, J(s̄, v̄), s̄)| s̄ 6= v̄[j+2,n+j]

|X(v̄, J(s̄, v̄), s̄)| − 1 s̄ = v̄[j+2,n+j]

Further this can be computed in O(q · n3 · log(n)) time.

Proof. From Lemma 18 the size of the set X(v̄, j, s̄) can be computed in O(n · q) opera-

tions. By the definition of X(v̄, j, s̄), |X(v̄, j, s̄)| · |PO(v̄, n−1
2 , j, s̄)| is the number of words

w̄ ∈ PO(v̄) where w̄[1,(n−1)/2] ∈ PO(v̄, n−1
2 , j, s̄). Therefore∑

s̄∈S(v̄,n−1)

(
n−1∑
j=1
|X(v̄, j, s̄)| · |PO(v̄, n−1

2 , j, s̄)|

)
counts every word w̄ ∈ PO(v̄) where w̄[1,(n−1)/2] ∈

PO(v̄, n−1
2 , j, s̄) for some arguments j ∈ [|v| − 1], s̄ ∈ S(v̄, n− 1). As there are n2 possible

values of j and s̄, and computing |X(v̄, j, s̄)| · |PO(v̄, n−1
2 , j, s̄)| requires O(q · n) steps, the

total complexity of counting
∑̄
svv̄

(
n−1∑
j=1
|X(v̄, j, s̄)| · |PO(v̄, n−1

2 , j, s̄)|

)
is O(n3 · q).

For words of the form φ̄Rxφ̄ where φ̄Rφ̄ v v̄ note that for every character in X(v̄, j, s̄),

〈xφ̄φ̄R〉 ≥ v̄. Further, as 〈φ̄Rφ̄x〉 = v̄ only when φ̄Rφ̄ = v̄[j+2,|v|+j] and x = v̄j+1, the

number of words of this form is |X(v̄, j, s̄)|, when φ̄Rφ̄ 6= v̄[j+2,|v|+j], and |X(v̄, j, s̄)| − 1

otherwise. As the conditions can be checked in O(n) time, X(v̄, j, s̄) can be computed in

O(n·q) time, and there are O(n) subwords in S(v̄, n−1), the total complexity of computing
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∑
s̄∈S(v̄,n)


|X(v̄, J(s̄, v̄), s̄)| s̄ = φφR and s̄ 6= v̄[j+2,n+j]

|X(v̄, J(s̄, v̄), s̄)| − 1 s̄ = φφR and s̄ = v̄[j+2,n+j]

0 s̄ 6= φφR

is O(n2 ·q). Therefore the total

complexity of computing the size of PO(v̄) from the array SizePO[i, j, s̄] is O(n3 · q). In

order to compute the array SizePO a total of O(q · n3 · log(n)) operations are needed.

Hence the total complexity is O(q · n3 · log(n)).

6.3.2 Even Length Palindromic Necklaces

Section 6.3.1 shows how to rank v̄ within the set of odd length palindromic necklaces. This

leaves the problem of counting even length palindromic necklaces. As in the odd case, the

first step is to determine how to characterise these words. Proposition 12 shows that every

palindromic necklace has at least one word of either the form φ̄φ̄R, where φ̄ ∈ Σn/2, or

xφ̄yφ̄R, where x, y ∈ Σ and φ̄ ∈ Σ(n/2)−1. Proposition 12 is strengthened by Propositions

13 and 14, showing that each palindromic necklace of even length has no more than two

words of either form. Lemmas 22, 23, 24 and 25 use these results a similar manner to

Section 6.3.1 to count the number of palindromic necklaces of even length.

Proposition 12. A necklace w̃ of even length n is palindromic if and only if there exists

some word ū ∈ w̃ where either (1) ū = xφ̄yφ̄R where x, y ∈ Σ and φ̄ ∈ Σ(n/2)−1, or (2)

ū = φ̄φ̄R where φ̄ ∈ Σn/2.

Proof. Given a word ū of the form xφ̄yφ̄R where ū ∈ w̃, ūR is equal to φ̄yφ̄Rx. Following

this observation ū = 〈ūR〉1. Therefore for every word in w̃ the reflection is also in w̃.

Similarly, given a word ū ∈ w̃ of the form φ̄φ̄R, ū = īR, therefore for every word in the

necklace w̃, the reflection is also in w̃.

In the other direction, let w̃ be a palindromic necklace of even length n. If there is

any word ū ∈ w̃ such that ū = ūR, then the word must be of the form φ̄φ̄R. Therefore

for the sake of contraction, assume every word ū ∈ w̃ must not be equal to ūR. As w̃ is

palindromic, there exists some rotation i such that ū = 〈ūR〉i. Therefore ū1 = ūn−i, ū2 =

ūn−i−1 . . . ūn−i = ū1 and ūn−i+1 = ūn . . . ū1 = ūn−i+1. This splits ū into 2 subwords,

s̄ and t̄, where s̄ = ū[1,n−i] and t̄ = ū[n−i+1,n] where s̄ = s̄R and t̄ = t̄R. Note that

s̄1t̄s̄n−i = s̄n−it̄
Rs̄1 and t̄1s̄t̄n−i = t̄n−is̄

Rt̄1.

To show the structural claim, there are two cases to consider depending on the value of

i and n
2 . If i is odd then lengths of s̄ and t̄ are even. Two new words s̄′ and t̄′ are defined
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where s̄′ = s̄[(i/2)+1,i]t̄[1,(n−i)/2] and t̄′ = t̄[(n−i)/2+1,n−i]s̄[1,i/2]. By the definition of s̄ and t̄,

s̄′R = t̄R[1,(n−i)/2]s̄
R
[i,i/2+1] = t̄[(n−i)/2+1,n−i]s̄[1,i/2+1] = t̄′. Therefore this word can be rotated

to a word of the form φ̄φ̄R.

If i is even then the lengths of s̄ and t̄ are odd. As before 2 words s̄′ and t̄′ are constructed

of length n
2−1 where s̄′ = s̄[i/2+1,i]t̄[1,(n−i)/2−1] and t̄′ = t̄n−i

2
+1 . . . t̄n−is̄1 . . . s̄ i

2
+1. As before,

s̄′R = t̄R[1,(n−i]/2−1]s̄
R
[i/2+1,i] = t̄[(n−i)/2+1,n−i]s̄[1,i/2−1] = v′. Letting x = t̄n−i

2
and y = s̄ i

2
,

then there is some rotation of ū of the form xφ̄yφ̄R.

Proposition 13. The word ū ∈ Σ∗ equals both xφ̄yφ̄R = ψ̄ψ̄R if and only if ū = xn.

Proof. Starting with xφ̄yφ̄R = ψ̄ψ̄R as xφ̄ = ψ̄, xφ̄yφ̄R = xφ̄φ̄Rx. This implies φ̄1 = x

allowing this to be rewritten as xxφ̄′φ̄′Rxx = xφ̄yφ̄R, implying that φ̄′1 = x. Repeating

this gives xφ̄yφ̄R = xxx . . . x.

Proposition 14. For an even length palindromic necklace ã there are at most two words

w̄, ū ∈ ã where either (1) w̄ and ū are of the form xφ̄yφ̄R where x, y ∈ Σ and φ̄ ∈ Σ(n/2)−1

or (2) w̄ and ū are of the form φ̄φ̄R where φ̄ ∈ Σn/2.

Proof. From Proposition 12 there must be at least 1 word of either form. Proposition 13

shows that a word may only be of the form xφ̄yφ̄R and ψ̄ψ̄R if and only if w̄ = xn. Let

w̄ and v̄ be two words such that w̄, v̄ ∈ ã and w̄ 6= v̄ where ã is a necklace of even length.

There are two cases based on the form of w̄ and v̄.

Case 1: w̄ = xφ̄yφ̄R, v̄ = aψ̄bψ̄R, v̄ = 〈w̄〉r. Let r be the smallest rotation where

〈w̄〉r 6= w̄ and 〈w̄〉r = aψ̄bψ̄R. Therefore v̄i = v̄n−i+1 = w̄n−i+r = w̄n−n+i−r = w̄i−r =

v̄n+i−2r = v̄i−2r. Therefore, v̄i = v̄i+2r = v̄i+4r = . . . = v̄i. Therefore w̄ has a period of

no more than p = GCD(2r, n). If GCD(2r, n) ≤ 2r, then the period must be no more

than r. If the period is r then w̄ = v̄, contradicting the assumption that they are not

equal. Otherwise, 〈w̄〉r = 〈w̄〉r−p, contradicting the assumption that r is the smallest

rotation for which the rotation of w̄ equals xψ̄yψ̄R, for some arguments of x, y ∈ Σ and

ψ̄ ∈ Σ∗. Therefore the period must be 2r. Hence let r > s be some rotation such that

w̄ 6= 〈w̄〉s 6= 〈w̄〉r. As 〈w̄〉r = w̄R, 〈w̄〉s+r = (〈w̄〉s)R. As the period is 2r, if s + r > 2r

then the rotation s−r is equivalent to the rotation by s contradicting the assumption that

r is the smallest rotation for which 〈w̄〉r = xψ̄yψ̄R, for some arguments of x, y ∈ Σ and

ψ̄ ∈ Σ∗. Therefore the only word satisfying v̄i = v̄i−2r is when r = n
2 , making v̄ = yφ̄Rxφ̄.
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Case 2: w̄ = φ̄φ̄R, v̄ = ψ̄ψ̄R, v̄ = 〈w̄〉r. For the sake of contradiction, let r be the

smallest rotation such that w̄ 6= 〈w̄〉r and 〈w̄〉r = ψ̄ψ̄R. Therefore v̄i = w̄i+r mod n, further

w̄i = v̄n+i−r mod n, w̄i = w̄n−i+1 and v̄i = v̄n−i+1. These equations can be rearranged to

give v̄i = v̄n−i+1 = w̄r+n−i−1 = w̄n−r−n+i+1−1 = w̄i−r = v̄i−2r = v̄i. Repeated application

of v̄i = v̄i−2r = v̄i−4r = . . . = v̄i−s·r shows that w̄ must have a period of no more than

p = GCD(2r, n). Therefore w̄ can be rewritten as ūn/p = φ̄φ̄R. If n
p is even then ū = ūR.

Assume for the sake of contradiction that there is some rotation t such that r < t < 2r, w̄ 6=
〈w̄〉t 6= v̄ and 〈w̄〉t is of the form φ̄φ̄R. If ū = ūR, then 〈ū〉t = (〈ū〉t)R. Hence the rotation

by 2r − t is equivalent to the rotation by t, contradicting the assumption that r is the

smallest rotation. If the period of w̄ is smaller than 2r it must be a factor of r, hence

〈w̄〉r = w̄ contradicting the assumption that w̄ 6= v̄. Therefore the period must be 2r,

implying that if w̄ = φ̄φ̄R then v̄ = φ̄Rφ̄. If n
p is odd then as ūn/p = φ̄φ̄R, ū[1,r] = ūr+1,2r.

Therefore the period is at most r, contradicting the assumption that p = GCD(2r, n). In

this case the arguments from the even case apply again.

Propositions 12, 13 and 14 show that every palindromic necklace of even length has 1 or 2

words of either the form xφ̄yφ̄R or φ̄φ̄R. To count the number of words of each form, the

problem is split into two sub problems, counting words of the form xφ̄yφ̄R and counting

the number of words of the form φ̄φ̄R. This is done using the same basic ideas as in Section

6.3.1. Two new sets PE(v̄) and PS(v̄) are introduced, serving the same function as PO(v̄)

for words of the from xφ̄yφ̄R and φ̄φ̄R respectively.

PE(v̄) :=
{
w̄ ∈ Σn : w̄ = xφ̄yφ̄R, where 〈w̄〉 > v̄, φ̄ ∈ Σ(n/2)−1, x, y,∈ Σ

}
PS(v̄) :=

{
w̄ ∈ Σn : w̄ = φ̄φ̄R, where 〈w̄〉 > v̄, φ̄ ∈ Σ(n/2)−1

}
Unlike the set PO(v̄) in Section 6.3.1 the sets PE(v̄) and PS(v̄) do not correspond directly

to bracelets greater than v̄. For notation let GE(v̄) and GS(v̄) denote the number of

bracelets greater than v̄ of the form xφ̄yφ̄R and φ̄φ̄R respectively. The number of even

length necklaces greater than v̄ equals GE(v̄) + GS(v̄)− (q − v̄1), where q − v̄1 denotes the

number of symbols in Σ greater than v̄1. Before showing how to compute the size of these

sets, it is useful to first understand how they are used to compute the rank amongst even

length palindromic necklaces. Lemmas 21 and 20 shows how to covert the cardinalities of

these sets into the number of even length palindromic necklaces smaller than v̄. The main

idea is to use the observations given by Propositions 12 and 14 to determine how many
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even length palindromic necklaces have either one or two words of the form xφ̄yφ̄R or φ̄φ̄R.

Proposition 15. Let l = n+2
4 if n

2 is odd or l = n
4 if n

2 is even. The number of even length

palindromic necklaces is given by 1
2

(
qn/2(q + 2) + ql

)
− q.

Proof. First consider the number of words of the form xφ̄yφ̄R. Let w̄, ū ∈ w̃ be a pair of

words of the form xφ̄yφ̄R such that w̄ 6= ū and 〈w̄〉r = ū. Following Proposition 14, if

2r < n and n
2r is odd, then w̄ = xφ̄yφ̄R = ψ̄t for some word ψ̄ of even length and t = n

2r .

Therefore ψ̄ = ψ̄R and further ψ̄ = 〈ψ̄〉r, therefore there is only a single word of the form

xφ̄yφ̄. On the other hand if 2r < n and n
2r is even then w̄ = xφ̄yφ̄R = ψ̄t for t = n

2r and

some word ψ̄ of length 2r. In this case, as t must be at least 2, xφ̄yφ̄R = xφ̄xφ̄, therefore

y = x and φ̄ = φ̄R. Further as ū = (ψ̄r)
t, ψ̄ = ψ̄R, therefore ū = w̄, hence there is only a

single word of the form xφ̄yφ̄R. Therefore the period of w̄ must be n and hence there are

only two words of the form xφ̄yφ̄R if and only if xφ̄ 6= yφ̄R.

Using this basis, the number of even length palindromic necklaces with one words of

the form xφ̄yφ̄R equals the number of words of the form xφ̄xφ̄. This is equal to qn/2. As

the number of words with 2 representations of the form xφ̄yφ̄R is q(n/2)+1, the number of

necklaces with any word of the form xφ̄yφ̄R is 1
2

(
qn/2+1 + qn/2

)
.

Proposition 14 shows that, given w̄, ū ∈ w̃ of the form φ̄φ̄R, w̄ 6= ū if and only if

ū = 〈w̄〉n/2 and φ̄ 6= φ̄R. Therefore the number of necklaces with 1 word of the form φ̄φ̄R

is equal to the number of values of φ̄ for which φ̄ = φ̄R. If |φ̄| is odd, this is equal to

q(n+2)/4 and qn/4 if |φ̄| is even. Hence the number of necklaces with two representations of

the form φ̄φ̄R is 1
2(qn/2 − ql), where l = n+2

4 if n
2 is odd or l = n

4 if n
2 is even. Therefore

the total number of necklaces with any word of the form φ̄φ̄R is 1
2

(
qn/2 + ql

)
. Recalling

from Proposition 13 that a word is of both forms if and only if it is of the form xn, there

are q necklaces that would be counted by both equations. Therefore the total number of

even length necklaces are 1
2

(
qn/2+1 + qn/2 + qn/2 + ql

)
− q.

Lemma 20. The number of necklaces greater than v̄ containing at least one word of the

form xφ̄yφ̄R is given by GE(v̄) = 1
2

|PE(v̄)|+

|PO(v̄[1,n/2])| n
2 is odd.

GE(v̄[1,n/2])
n
2 is even.

.

Proof. It follows that the number of necklaces of the form xφ̄yφ̄R that are greater than v̄

equals to the number of necklaces with one word of the form xφ̄yφ̄R, plus the number of

necklaces with two words of the form xφ̄yφ̄R. The number of words of the form xφ̄yφ̄R

greater than v̄ equals the size of PE(v̄). As a necklace has only one word of the form



112 Duncan Adamson

xφ̄yφ̄R if and only if xφ̄ = yφ̄R. This leaves the problem of counting the number of words

of the form xφ̄xφ̄ in necklaces greater than v̄. If n
2 is odd, then φ̄ can be rewritten as

ψ̄ψ̄R. In this case, the goal becomes to fine the number of words of the form xψ̄ψ̄Rxψ̄ψ̄R

in bracelets greater than v̄, which equals |PO(v̄[1,n/2])|. On the other hand, if n−2
2 is odd

then φ̄ can be rewritten as ψ̄yψ̄R. In this case, the goal becomes to fine the number of

words of the form xψ̄yψ̄Rxψ̄yψ̄R in bracelets greater than v̄, which equals the number of

words of the form xψ̄yψ̄R that are bracelets greater than v̄. This is given by GE(v̄[1,n/2]).

Therefore the total number of necklaces of the form xφ̄yφ̄R greater than v̄ is given by:

GE(v̄) =
1

2

|PE(v̄)|+

|PO(v̄[1,n/2])| n
2 is odd.

GE(v̄[1,n/2])
n
2 is even.



Lemma 21. The number of necklaces greater than v̄ containing at least one word of the

form φ̄φ̄R is given by GS(v̄) = 1
2

|PE(v̄)|+

|PO(v̄)| n
2 is odd.

GS(v̄[1,n/2])
n
2 is even.

.

Proof. Similar to Lemma 20, this Lemma is proven in a combinatorial manner by looking

at the two cases where there is only a single word of the form φ̄φ̄R. Recall that there is a

single word of this form if and only if φ̄ = φ̄R. Therefore, the number of necklaces with a

single word of the form φ̄φ̄R equals the number of palindromic words of length n
2 . Hence

if n
2 is even, the number of such words is GS(v̄[1,n/2]). On the other hand, if n

2 is odd, the

number of such words is |PO(v̄)|. Using the same arguments as in Proposition 15:

GE(v̄) =
1

2

|PE(v̄)|+

|PO(v̄)| n
2 is odd.

GS(v̄[1,n/2])
n
2 is even.



High Level Idea for the Even Case: Lemmas 20 and 21 show how to use the sets

PS(v̄) and PE(v̄) to get the number of necklaces of the form xφ̄yφ̄R and φ̄φ̄R respectively.

This leaves the problem of computing the size of both sets. This is achieved in a manner

similar to the one outlined in Section 6.3.1. At a high level the idea is to use two trees

analogous to T O(v̄) as defined in Section 6.3.1. The tree T E(v̄) is introduced to compute

the cardinality of PE(v̄) and the tree T S(v̄) is introduced to compute the cardinality of
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PS(v̄). As in Section 6.3.1, the trees T E(v̄) and T S(v̄) contain every prefix of a word in

PS(v̄) or PE(v̄) respectively. The leaf vertices of these trees correspond to the words in

these sets.

To compute the size of PE(v̄) using T E(v̄), the same approach as in Section 6.3.1 is

used. A word ū of length less than n
2 is a prefix of some word in PE(v̄) if and only if no

subword of (ū[1,|ū|−1])
Rū is less than the prefix of v̄ of the same length. This is slightly

different from the odd case, where ū ∈ PE(v̄) if and only if there is no subword of ūRū

smaller than the prefix of v̄ of the same length. To account for this difference the sets

PE(v̄, i, j, s̄) are introduced as analogies to the sets PO(v̄, i, j, s̄).

Definition 26. Let i ∈ [n+1
2 ], j ∈ [2i] and s̄ v2i v̄. The set PE(v̄, i, j, s̄) contains every

word ū ∈ T E(v̄) of length i where (1) the longest suffix of (ū[1,i−1])
Rū[1,i] which is a prefix

of v̄ has a length of j and (2) the word (ū[1,i−1])
Rū[1,i] is strictly bounded by s̄ v2i−1 v̄.

As in Section 6.3.1, the size of PE(v̄, i, j, s̄) is computed via dynamic programming. The

array SizePE is introduced, storing the size of PE(v̄, i, j, s̄) for every value of i ∈
[
n
2

]
, j ∈

[2i − 1] and s̄ v2i−1 v̄. Let SizePE be and n × n × n array such that SizePE[i, j, s̄] =

|PE(v̄, i, j, s̄)|. Lemma 22 shows that the techniques used in Lemma 17 can be used to

compute SizePE in O(q · n3 log(n)) time. This is done by proving that the properties

established by Lemma 16 regarding the relationship between the sets PO(v̄, i, j, s̄) also

hold for the sets PE(v̄, i, j, s̄). As words in PS(v̄) are of the form φ̄φ̄R, a word ū is in

T S(v̄) if and only if no subword of ūRū is less than the prefix of v̄ of the same length.

Note that this corresponds to the same requirement as the odd case. As such the internal

vertices in the tree T S(v̄) may be partitioned in the same way as those of T O(v̄). Lemma

24 shows how to convert the array SizePO as defined is Section 6.3.1 to the size of PS(v̄).

Lemma 22. Given ū, w̄ ∈ PE(v̄, i, j, s̄) and x ∈ Σ. If ūx ∈ PE(v̄, i + 1, j′, s̄′) then

v̄x ∈ PE(v̄, i + 1, j′, s̄′). Further the values of j′ and s̄′ can be computed in constant time

from the values of j, s̄ and x. Therefore the array SizePE[i, j, s̄] can be computed for every

value i ∈
[
n
2

]
, j ∈ [2i− 1] and s̄ v2i−1 v̄ in O(q · n3 · log(n)) time.

Proof. Note that these are the same properties as proven in Lemma 16. As the arguments

j and s̄ serve the same function for both PE(v̄, i, j, s̄) and PO(v̄, i, j, s̄), the arguments

from Lemma 16 can be applied directly to this setting.

Following the above arguments, the techniques employed in Lemma 17 can be applied

to computing the value of PE[i, j, s̄] for every argument i ∈
[
n
2

]
, j ∈ [2i − 1] and s̄ v2i−1
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v̄. The only modification needed is to account for the change the form of the words in

PE(v̄, i, j, s̄) versus those in PO(v̄, i, j, s̄). As the words in PE(v̄, i, j, s̄) have the form

φ̄Rxφ̄, rather than φ̄Rφ̄, the set PE(v̄, i, j, s̄) represents words of length 2i− 1.

Lemma 23. Let v̄ ∈ Σn. The size of PE(v̄) can be computed in O(q · n3 · log(n)) time.

Proof. Note that for every word w̄ ∈ PE(v̄), either w̄[1,(n/2)] ∈ PE(v̄, n2 , j, s̄) or

(w̄[2,(n/2)−1])
Rw̄[1,(n/2)−1] v v̄. Following the arguments in Lemmas 18 and 19, the number

of words w̄ ∈ PE(v̄) where w̄[1,(n/2)] ∈ PE(v̄, n2 , j, s̄) for some given values of j ∈ [n− 1] and

s̄ vn−1 v̄ is equal to the number of symbols x ∈ Σ where 〈w̄[1,(n/2)]xw̄
R
[1,(n/2)−1]〉 > v̄. Using

the same techniques laid out in Lemma 18, the set of such symbols can be computed in

O(q · n) time. It follows that given the array PE, the number of words w̄ ∈ PO(v̄) where

(w̄1, w̄2, . . . .w̄n/2) ∈ PE(v̄, n2 , j, s̄) can be computed in O(n2 · q) operations by checking

every combination of j ∈
[
n
2

]
, s̄ ∈ S(v̄, n− 1) and x ∈ Σ.

Similarly if w̄ ∈ S(v̄, n− 1), then w̄x ∈ PE(v̄) if and only if w̄ = φ̄Rxφ̄ and w̄〈x〉 > v̄.

Each subword s̄ ∈ S(v̄, n − 1) may be checked in O(n2) operations by first checking that

s̄ = s̄R, then finding the smallest rotation of s̄x and comparing it to v̄. As there are

n words in S(v̄, n − 1) and q symbols in Σ, this takes O(n3 · q) operations. Computing

the arrays PE,WX and XW takes O(n3 · q · log(n)) time, hence the total complexity is

O(n3 · q · log(n)).

The size of PS(v̄) is calculated in a similar manner. As the words in PS(v̄) are of the form

φ̄φ̄R, the prefixes of length i correspond to subwords of length 2i with the form ūRū. Note

that these are the same as the prefixes used in Section 6.3.1 for odd length palindromic

necklaces. As such, the sets PO(v̄, i, j, s̄) are used to partition internal vertices of the tree

T S(v̄). Lemma 24 shows how to use these sets to compute the size of PS(v̄).

Lemma 24. Let v̄ ∈ Σn. The size of PS(v̄) can be computed in O(q · n3 · log(n)) time.

Proof. For every word w̄ ∈ PS(v̄) there are two cases to consider:

• Case 1: (w̄[1,(n/2)−1])
Rw̄[1,(n/2)−1] v v̄.

• Case 2: There exists some set PO(v̄, n2 − 1, j, s̄) such that w̄[1,(n/2)−1] ∈ PS(v̄, n2 −
1, j, s̄).

The number of words in the first case can be computed by considering every subword

s̄ ∈ S(v̄, n− 2) and z ∈ Σ where s̄ = s̄R and 〈zs̄z〉 > v̄. Note both of the above conditions
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can be checked in at most O(n) operations. If both conditions hold, then s̄ and z correspond

to exactly one word in PS(v̄). As there are n possible values of s̄ and q values of z therefore

the number of words in this case can be computed in O(n2 · q) operations.

The number of words in the second case can be computed by considering every vale

of j ∈ [n − 2], s̄ ∈ S(v̄, n − 2) and z ∈ Σ. Let w̄[1,(n/2)−1] ∈ PS(v̄, n2 − 1, j, s̄). The word

z(w̄[1,(n/2)−1])
Rw̄[1,(n/2)−1]z ∈ PS(v̄) if and only if 〈z(w̄[1,(n/2)−1])

Rw̄[1,(n/2)−1]z〉 > v̄. This

is the case if and only if v̄[1,j]zzs̄ > v̄ which can be checked in O(n) time. If v̄[1,j]zzs̄ > v̄,

then there are PS[n2 − 1, j, s̄] prefixes in PS(v̄, i, j, s̄) such that

〈z(w̄[1,(n/2)−1])
Rw̄[1,(n/2)−1]z〉 > v̄. As there are n values of j and s̄ and q values of z the

number of words in this case can be computed in O(n3 · q) operations. Finally, in order

to compute this case in O(n3 · q) steps, the array PS must be precomputed, requiring

O(q · n3 · log(n)) operations. Therefore the total complexity is O(q · n3 · log(n)).

Combining Lemmas 23 and 24 with Lemmas 20 and 21 provides the tools to compute the

rank of v̄ among even length palindromic necklaces. Lemma 25 shows how to combine

these values to get the rank of v̄ among even length palindromic necklaces.

Lemma 25. The rank of v̄ ∈ Σn among even length palindromic necklaces can be computed

in O(q · n3 · log(n)2) time.

Proof. From Proposition 15, the number of even length palindromic necklaces is equal to
1
2

(
qn/2+1 + 2qn/2 + ql

)
− q, where l = n+2

4 if n
2 is odd, or l = n

4 if n
2 is even. Lemma 20

provides an equation to count the number of necklaces greater than v̄ containing at least

one word of the form xφ̄yφ̄R. The equation given by Lemma 20 requires the size of PE(v̄)

to be computed, needing at most O(q · n3 · log(n)) operations, and either |PE(v̄[1,n/2])|
or GE(v̄[1,n/2]). As both |PE(v̄)| and |PO(v̄)| require O(q · n3 · log(n)) operations, the

total complexity comes from the number of such sets that must be considered. As the

prefixes of v̄ that need to be computed is no more than log2(n), the total complexity of

computing GE(v̄) is O(q ·n3 · log2(n)). Similarly as the complexity of computing PS(v̄) is

O(q · n3 · log(n)), the complexity of computing GS(v̄) is O(q · n3 · log2(n)).

Theorem 16. Give a word v̄ ∈ Σn, the rank of v̄ with respect to the set of palindromic

necklaces, RP (v̄), can be computed in O(q · n3 · log2(n)) time.

Proof. The number of odd length palindromic necklaces is given by Proposition 5 as

q(n−1)/2. Lemma 19 shows that the size of set PO(v̄), corresponding to the number of
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odd length palindromic bracelets, can be computed in O(q ·n3 · log(n)) time. By subtract-

ing the size of PO(v̄) from q(n−1)/2, the rank of v̄ can be computed in O(q · n3 · log(n))

time. Lemma 25 shows that of RP (v̄) can be computed in O(q · n3 · log2(n)) time if the

length of v̄ is even. Hence the total complexity is O(q · n3 · log2(n)).

6.4 Enclosing Bracelets

Following Lemma 12 and Theorem 16, the remaining problem is counting the number

of enclosing words. This section provides a technique to count the number of necklaces

enclosing some word v̄. As in the palindromic case, the structure of these words are first

analysed so that a more efficient algorithm can be derived.

Proposition 16. The bracelet representation of every bracelet ŵ enclosing the word v̄ ∈ Σn

can be written as v̄[1,i]xφ̄ where; x ∈ Σ is a symbol that is strictly smaller than v̄[i+1], and

φ̄ ∈ Σ∗ is a word such that every rotation of (v̄[1,i]xφ̄)R is greater than v̄.

Proof. For the sake of contradiction let ŵ be a bracelet enclosing v̄ such that the bracelet

representation of ŵ, ā can not be written as v̄[1,i]xφ̄. Let b̄ = 〈āR〉. By the definition of an

enclosing necklace, ā < v̄ < b̄. If ā1 < v̄1, then b̄1 < v̄1. Similarly if b̄1 > v̄1 then ā1 > v̄1.

Hence ā1 = v̄1 = b̄1. Therefore there exists some non zero value of i such that ā[1,i] = v̄[1,i].

Let i be the length of the longest shared prefix of v̄ and ā, i.e. the largest value such

that v̄[1,i] = ā[1,i]. If the symbol āi+1 > v̄i+1 ā > v̄ contradicting the assumption that

ā < v̄. Similarly if āi+1 = v̄i+1, there is a longer shared prefix. Therefore āi+1 < v̄i+1.

As this word can be written as v̄[1,i]xφ̄, it must be assumed that some rotation of

(v̄[1,i]xφ̄)R is less than or equal to v̄. If this is the case, ŵ does not enclose v̄, as both

necklace classes are smaller than or equal to v̄. Therefore the bracelet representation of

every bracelet ŵ enclosing the word v̄ ∈ Σn can be written as stated.

Proposition 17. Given a bracelet ŵ enclosing the word v̄ ∈ Σn of the form v̄[1,j]xφ̄ as

given in Proposition 16. The value of x must be greater than or equal to v̄[(j+1) mod l] where

l is the length of the longest Lyndon word that is a prefix of v̄[1,j].

Proof. For the sake of contradiction assume that x < v̄[(j+1) mod l]. Following Theorem

2.1 due to Cattell et. al. [17], the subword v̄[j−(j mod l),j] = v̄[1,j mod l]. Therefore if

x < v̄j+1 mod l then the subword v̄[1,j mod l]x < v̄[1,l]. In this case, there is a smaller rotation
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of v̄[1,j]xφ̄, contradicting our assumption the v̄[1,j]xφ̄ is the smallest rotation. Hence x must

be greater than or equal to v̄j+1 mod l.

High Level Idea for the Enclosing Case: As in Sections 6.3.1 and 6.3.2, the main idea

is to use the structure from Proposition 16 as a basis to count the number of enclosing

bracelets. For each value of i and x, the number of possible values of φ̄ are counted.

This is done in a recursive manner, working backwards from the last symbol. For each

combination of i and x, the key properties to observe are that (1) every suffix of φ̄ must

be greater than or equal to v̄[1,i]x and (2) every rotation of φ̄Rxv̄R[1,i] is greater than v̄.

These observations are used to create a tree, T EN (v̄, i, x), where each vertex represents

a suffix of some possible value of φ̄. Equivalently, the vertices of T EN (v̄, i, x) can be

thought of as representing the prefixes of φ̄R. The leaf vertices of T EN (v̄, i, x) represent

the possible values of φ̄. As in Section 6.3, each layer of T EN (v̄, i, x) is grouped into sets

based on the lexicographical value of the reflection of the suffixes, and the prefixes of the

suffixes. Let t ∈ [|w̄| − i], j ∈ [t+ i+ 1] and s̄ vt+i+1 v̄. For the tth layer of T EN (v̄, i, x),

the set E(v̄, i, x, j, s̄) is introduced containing a subset of the vertices at layer t. The idea

is to use the values of j and s̄ to divide the prefixes at layer t by lexicographic value and

suffix respectively. Let ū ∈ E(v̄, i, x, j, s̄) be a suffix of some word w̄ such that v̄[1,i]xw̄ is a

bracelet enclosing v̄. To ensure that the necklace represented by the reflection is strictly

greater than v̄, j is used to track the longest prefix of ūR that is a prefix of v̄. To ensure

that there is no rotation of xv̄R[1,i]w̄
R, the subword s̄ vt v̄ is used to bound the value of

ūR. Formally, E(v̄, i, x, j, s̄) contains every suffix ū ∈ T EN (v̄, i, x) of length i where (1) the

longest prefix of ūR that is also a prefix of v̄ and (2) the subword s̄ vt v̄ bounds ūR.

As in Section 6.3 the number of leaf vertices are calculated by determining the size of the

sets E(v̄, i, x, j, s̄) at layer |v̄| − i− 2, and the number of children of each set. To determine

the size of the sets, two key observations must be made. The first is that given the word

ū ∈ E(v̄, i, x, j, s̄) and the symbol y ∈ Σ, if yū ∈ T EN (v̄, i, x) then there exists some pair

j′ ∈ [n], s̄′ v|ū|+1 v̄ such that yū ∈ E(v̄, i, x, j′, s̄′). Secondly, if yū ∈ E(v̄, i, x, j′, s̄′), then

yw̄ ∈ E(v̄, i, x, j′, s̄′) for every w̄ ∈ E(v̄, i, x, j, s̄). These observations are proven in Lemma

26, as well as showing how to determine the values of j′ and s̄′.

Lemma 26. Given ū ∈ E(v̄, i, x, j, s̄) and symbol y ∈ Σ, the pair j′ ∈ [n], s̄′ v|ū|+1 v̄ such

that yū ∈ E(v̄, i, x, j′, s̄′) can be computed in constant time. Further, if yū ∈ E(v̄, i, x, j′, s̄′),

then yw̄ ∈ E(v̄, i, x, j′, s̄′) for every w̄ ∈ E(v̄, i, x, j, s̄).
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Proof. Assume that the array XW given in Section 6.2 has been precomputed. Following

the same arguments as presented in Lemma 16, the value of j′ is either j + 1, if y = v̄j+1,

or 0 otherwise. Similarly, the value of s̄′ is equal to the value given by XW [s̄, w̄1]. Note

that if ys̄′ < v̄ then there is no such value of s̄′. Similarly if y < v̄j+1 then there no value

of j′. To show that yw̄ ∈ E(v̄, i, x, j′, s̄′) for every w̄ ∈ E(v̄, i, x, j, s̄), recall from Lemma 13

that if s̄′ bounds ys̄, then s̄′ bounds yw̄ for every w̄ bounded by s̄. Similarly, if j′ is the

length longest suffix of ūRy that is a prefix of v̄, j′ must also be the length of the longest

suffix of w̄Ry that is a prefix of v̄.

From Lemma 26, the size of E(v̄, i, x, j, s̄) are computed using the sizes of E(v̄, i, x, j′, s̄′)

for j′ ∈ [0, n] and s̄′ ∈ S(v̄, |s̄|+ 1). To compute the value of E(v̄, i, x, j, s̄), an array SE of

size q × n× n× n2 is introduced such that the value of SE[x, i, j, s̄] = |E(v̄, i, x, j, s̄)|.

Lemma 27. Let v̄ ∈ Σn. Let SE be a n×n2 array such that SE[x, i, j, s̄] = |E(v̄, i, x, j, s̄)|
for j ∈ [0, n] and s̄ v v̄. Every value of SE[x, i, j, s̄] is computed in O(q2 · n4) time.

Proof. Initially the value of SE[j, s̄] is set to 0. Observe that every word w̄ ∈ E(v̄, i, x, j, s̄)

where |w̄| > 1 can be written as zw̄′ for w̄′ ∈ E(v̄, i, x, j′, s̄′). From Lemma 26, the

value of j′ and s̄′ can be calculated in constant time. Therefore to efficiently compute

the values of SE, it is reasonable to start by computing the size of E(v̄, i, x, j, s̄) for every

i ∈ [0, n], x ∈ Σ, j ∈ [0, n] and s̄ ∈ S(v̄, n − 1). Given i ∈ [0, n], x ∈ Σ, j ∈ [0, n] and

s̄ ∈ S(v̄, n − 1), the size of E(v̄, i, x, j, s̄) is computed directly by checking each value of

z ∈ Σ. If z ≥ (v̄[1,i]x)j+1 mod i+1 and xs̄ > v̄ then the value of SE[i, x, j, s̄] is incremented

by 1, otherwise it remains the same.

Once the value of SE[i, x, j, s̄] has been computed for every value of i ∈ [1, n], x ∈
Σ, j ∈ [0, n] and s̄ ∈ S(v̄, n − 1), the next step is to compute the value of SE[i′, x′, j′, s̄′]

for every i′ ∈ [1, n], x′ ∈ Σ, j′ ∈ [0, n] and s̄′ ∈ S(v̄, n− 2). This is done by looking at each

value of i ∈ [1, n], x ∈ Σ, j ∈ [0, n], s̄ ∈ S(v̄, n− 1) and z ∈ Σ and determining the values of

j′ and s̄′ for which zw̄ ∈ E(v̄, i, x, j′, s̄′) where w̄ ∈ E(v̄, i, x, j, s̄) following Lemma 26. Once

the value of j′ and s̄′ has been determined, SE[x, i, j′, s̄′] is increased by SE[x, i, j, s̄]. By

repeating this for every value of i ∈ [1, n], x ∈ Σ, j ∈ [0, n], s̄ ∈ S(v̄, n− 1) and z ∈ Σ leaves

the value of SE[x, i, j′, s̄′] as the size of E(v̄, i, x, j′, s̄′).

Let t ∈ [1, n − 1]. Once every value of SE[x, i, j, s̄] for every value of i ∈ [1, n], x ∈
Σ, j ∈ [0, n], and s̄ ∈ S(v̄, t), the value of SE[x′, i′, j′, s̄′] is computed for every i ∈ [1, n], x ∈
Σ, j ∈ [0, n], s̄ ∈ S(v̄, t − 1). This is done by determining the value of j′ and s̄′ for each
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combination of i ∈ [1, n], x ∈ Σ, j ∈ [0, n], s̄ ∈ S(v̄, t) and z ∈ Σ following Lemma 26. Once

the value of j′ and s̄′ has been determined, SE[x, i, j′, s̄′] is increased by SE[x, i, j, s̄]. By

repeating this for every value of i ∈ [1, n], x ∈ Σ, j ∈ [0, n], s̄ ∈ S(v̄, t) and z ∈ Σ leaves the

value of SE[x, i, j′, s̄′] as the size of E(v̄, i, x, j′, s̄′).

Repeating this for every value of t from n− 1 to 1 completely computes the array SE.

In order to compute this array, observe that for each of the O(n) values of t, there are

O(n) values of i, j and s̄ to check alongside O(q) values of x and z. As each combination

only needs to be checked once, and the process of determining j′ and s̄′ can be done in

constant time, the total complexity is O(n4 · q2).

Once SE has been computed, the number of enclosing words can be computed using SE

and each valid combination of i and x. This is done in a direct manner. Note that the

number of possible values of φ̄ such that v̄[1,i]xφ̄ represents a bracelet enclosing v̄ is equal

to SE[x, i, j, s̄] where j is the longest suffix of v̄[2,i]x that is a prefix of v̄ and s̄ is the

subword that bounds xv̄R[1,i]. As both values can be computed naively in O(n2) operations,

the complexity of this problem comes predominately from computing SE.

Theorem 17. The number of bracelets enclosing v̄ ∈ Σn can be computed in O(n4 · q2).

Proof. From Lemma 27 the array SE may be computed in O(n4 · q2) operations. Using

SE, let i ∈ [1, n] and x ∈ Σ. Further let l be the length of the longest Lyndon word

that is a prefix of v̄[1,i]. If the value of x is less than v̄i+1 mod l or greater than or equal

to v̄i+1 then there is no bracelet represented by v̄[1,i]xφ̄. Similarly if xv̄R[1,i] < v̄[1,i+1], then

any bracelet of the form v̄1,ixφ̄ does not enclose v̄. Otherwise, the number of enclosing

bracelets represented by v̄[1,i]xφ̄ is equal to SE[x, i, j, s̄′] where j is the longest suffix of

v̄[2,i]x that is a prefix of v̄ and s̄ is the subword that bounds xv̄R[1,i]. By summing the

value of SE[x, i, j, s̄′] for each value of i ∈ [1, n] and x ∈ Σ such that v̄[1,i]x is the prefix

of the representation of some bracelet enclosing v̄ gives the number of enclosing bracelets.

Therefore RE(v̄) =
∑

i∈[1,n−1]

∑
x∈Σ


0 xv̄R[1,i] < v̄

0 x ≤ v̄i+1 mod l or x > v̄i+1

SE[x, i, j, s̄′] Otherwise.

6.5 Ranking Bracelets

The tools are now available to prove Theorem 14 and show that it is possible to rank a

word v̄ ∈ Σn with respect to the set of bracelets of length n over the alphabet Σ in O(q2 ·n4)
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steps.

Proof of Theorem 14 .

Proof. To rank bracelets, it is sufficient to use the results of ranking v̄ with respect to

necklaces, palindromic necklaces and bracelets enclosing v̄, combining them as shown in

Lemma 12. Sawada et. al. provided an algorithm to rank v with respect to necklaces

in O(n2) time. It follows from Theorem 16 that the rank with respect to palindromic

necklaces can be computed in O(q ·n3) time. Theorem 17 shows that the rank with respect

to bracelets enclosing v can be computed in O(q2 · n4) time. As combining these results

can be done in O(1) steps, therefore the overall complexity is O(q2 · n4). Further, this

shows that following Lemma 28 the number of bracelets sharing a given prefix p̄ can be

computed in at most O(n4 · q2) time.

Theorem 18. Given a word v̄ ∈ Σn, the rank of v̄ with respect to the set of bracelets of

length n over the alphabet Σ, RB(v̄), can be computed with no more than O(q · n4) space.

Proof. Following Theorem 14, the space complexity of computing the rank of v̄ is equivalent

to the greatest space complexity of computing the rank of v̄ among the sets of necklaces,

palindromic necklaces, and enclosing bracelets. As all three sets require the set of bounding

subwords to be precomputed in order to run within the given time bounds, a total of

O(n2 · q) space complexity is needed, dominating the naive O(n2) space complexity of

ranking necklaces.

For Palindromic necklaces, observe that the size of PO(v̄) requires only the sizes of

PO(v̄, n−1
2 , j, s̄) and X(v̄, j, s̄) to be computed for every j ∈ [n−1] and s̄ @n−1 v̄, requiring

a total of O(n2) space. Further, the size of PO(v̄, i, j, s̄) can be computed from the set of

bounding subwords and the sizes of PO(v̄, i− 1, j′, s̄′) for every j′ ∈ [2i− 2], s̄′ @2i−2 v̄. As

the sizes of PO(v̄, i−1, j′, s̄′) only need to be stored until the size of PO(v̄, i, j, s̄) has been

computed for every j ∈ [2i], s̄ @2i v̄. Therefore only a total of O(n2) space complexity is

needed to compute the size of PO(v̄, n−1
2 , j, s̄) for every j ∈ [n − 1] and s̄ @n−1 v̄. The

same argument may be applied to the even case with the additional cost of storing the size

of O(log(n)) sets, giving a total space complexity in the even case of O(n2). By extension,

the space complexity of computing the rank among palindromic necklaces is O(n2).

In the enclosing case, the rank of v̄ can be computed from the size of the sets E(v̄, i, x, j, s̄)

for every x ∈ Σ, i ∈ [1, n − 1], j ∈ [n], and s̄ @ v̄, requiring O(q · n4) space. Therefore the
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total space complexity required is O(q · n4) for both ranking within the set of enclosing

bracelets and the general set of bracelets.

Corollary 6. The zth bracelet of length n over Σ can be computed with no more than

O(q · n4) space.

Proof. Observe that at each step in the unranking process, it is necessary to rank two

bracelets, each requiring O(q · n4) space. Further, as it is never necessary to store more

than the current prefix, and some negligible amount of information concerning the current

state of the binary search, the space complexity is dominated by the O(q ·n4) term. Hence

the total space complexity is O(q · n4).

Using the ranking method given by Theorem 14, a method to derive the number of bracelets

sharing a given prefix in polynomial time can be derived. Lemma 28 provides a basis for

determining the number of bracelets sharing a given prefix.

Lemma 28. The number of bracelets sharing a given prefix p̄ can be determined in O(n4·q2)

time.

Proof. This is done by comparing the rank of the smallest and largest necklaces with a

given prefix. The canonical form of the largest necklace is found using the word w̄ where

w̄i = p̄i mod |p̄|. If w̄ is not a necklace, then using the algorithm outlined in Theorem 28, the

smallest word w̄′ > w̄ such that w̄′ is the canonical form of some necklace, can be found

in O(n) time. In the other direction, the word v̄ representing the largest necklace with p̄

is defined as v̄ = p̄ : qn−|p̄|, where q is the largest symbol in the alphabet Σ.

In order to determine the number of bracelets between these two necklaces, the ranking

algorithm that is presented in Chapter 6 is used. As RB(w̄) returns the number of bracelets

smaller than w̄, the number of bracelets between w̃ and ṽ equals RB(v̄) − RB(w̄) + 1.

Theorem 14 shows that RB(w̄) can be computed in at most O(n4 · q2) time, where n is

the length of w̄ and q the size of the alphabet. Therefore the number of bracelets sharing

a given prefix p̄ can be computed in at most O(n4 · q2) time.



Chapter 7

Ranking and Unranking

Constrained Necklaces

In this chapter we consider two sets of possible constraints on necklaces. The first of these

is the set of necklaces corresponding to positive integer solutions to linear Diophantine

equations with positive weights. These constraints not only provide a useful tool for neck-

laces, but have the independent motivation of sampling solutions to linear equations. In

particular, these solutions match the problems present in tools such as MC-EMMA or

FUSE, where the goal is to find combinations of blocks that match a given chemical for-

mula. The second set we look at is the set of necklaces with forbidden subwords. These

are simply necklaces that do not contain as a subword any word from some given set. This

set can be used to provide a means to avoid known bad combinations, by eliminating them

as potential centres.

The remainder of this chapter is organised as follows. Section 7.1 provides results for

counting, ranking and unranking n-weight Parikh vectors solving diophantine equations,

i.e. Parikh vectors solving some given set of linear diophantine equations where the sum

of the entries equals n. Section 7.2 generalises the results from Section 7.1 from Parikh

vectors to necklaces with the given Parikh vectors. Explicitly, Section 7.2 provides results

for counting, ranking, and unranking necklaces of length n with Parikh vectors solving some

given set of Diophantine equations. Finally, Section 7.3 provides algorithms for ranking

and unranking necklaces under a given set of forbidden subwords.

122
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7.1 n-Weight Parikh Vectors

The first setting that this chapter looks at is counting the number of n-weight Parikh

vectors solving some system of linear equations. Recall from Section 2.2.1 that a Parikh

vector P has weight n if the sum of entries P1 + P2 + . . .+ Pq = n. Note that every entry

in a Parikh vector must be either 0 or some positive integer. This section is interested

in Parikh vectors of weight n that can solve a given system of m linear equations for q

variables, determined by some matrix of size m× q A ∈ Nm,q and vector C ∈ Nm of length

m. A Parikh vector P of length q solves such a system if A ·P = C.

This direction is motivated by the problem of choosing blocks in settings such as FUSE

or MC-EMMA, without any consideration for the local structures. As such, our systems of

linear equations can be thought of as corresponding to chemical equations, with the vector

C denoting the number of each ion species appearing in the global structure such that Ci

denotes how many ions of species i must appear in the overall structure. Similarly Ai,j

specifying how many times the jth block contains the ith species.

Parikh words, the canonical form of the Parikh vectors, are used as a basis for compar-

ison. Recall that the Parikh word corresponding to a given n-weight Parikh vector P of

length q is the word 1P1 : 2P2 : . . . : qPq . For a given system of linear equations, the value

of q is simply the number of variables in the system.

The first problem this section considers is that of counting the number of Parikh vectors

with weight n solving a given set of linear equations defined by the matrix A ∈ Nm,q and

vector C ∈ Nm, i.e. determining the size of the set P(n,A,C). The key observation to

make is that the number of vectors in P(n,A,C) where xi ≥ 1 equals |P(n−1, A,C)−w(i)|,
where w(i) returns the vector of length q corresponding to the ith column of A.

In order to count the size of P(n,A,C) precisely, the number of Parikh words is used

as a way of uniquely representing each vector. As the ith symbol of each Parikh word is no

smaller than the (i − 1)th symbol, it is reasonable to compute the number of such words

based on the number of suffixes. Using this observation as a basis, let Count(n,A,C, i)

return the number of solutions to A · x = C where the first i− 1 variables are set to 0, i.e.

x1 = x2 = . . . = xi−1 = 0. Note that the number of vectors in P(n,A,C) corresponding

to a Parikh word for which the first symbol is i equals Count(n− 1, A,C−w(i), i). Recall

from the preliminaries that w(i) returns the vector corresponding to the ith column of A.

More generally, note that the size of Count(n,A,C, i) is
q∑
j=i

Count(n− 1, A,C− w(j), j).
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Further, observe that Count(0, A,C, i) equals either 1, if C1 = C2 = . . . = Cq = 0 or 0

otherwise. For notation, let C = 0 if C1 = C2 = . . . = Cq = 0 and C 6= 0 if Ci 6= 0 for

any i ∈ [q]. Using these observations, the following recursive formula for Count(n,A,C, i)

is derived:

Count(n,A,C, i) =



q∑
j=i

Count(n− 1, A,C− w(j), j) n > 0

1 n = 0,C = 0

0 n = 0,C 6= 0

Lemma 29. The size of P(n,A,C) can be computed in O(C · n · q2) operations, where

C = C1 ·C2 · . . . ·Cm, and the number of variables in x is q.

Proof. Note that |P(n,A,C)| = Count(n,A,C, 1). Observe that Count(n,A,C, i) can be

computed in O(q) operations if Count(n− 1, A,Q, j) has been computed for every j ∈ [q]

and Q ∈ [C]. Further note that Count(0, A,C, i) can be computed in m operations by

checking that Cj = 0 for every j ∈ [m]. Using these observations, a dynamic programming

approach is derived. Starting with t = 0, the value of Count(t, A,Q, i) is computed for

every combination of Q ∈ [C], t ∈ [0, n], i ∈ [q] in increasing value of t. Note that the

number of possible values of [Q] equals the number of vectors of the from (x1, x2, . . . , xq)

where 0 ≤ xi ≤ Ci, giving a total of (C1 + 1) · (C2 + 1) · . . . · (Cm + 1) possible values

which is of order O(C). Therefore, as there are O(C) such values of Q, n values of t and q

values of i, the total number of values of Count(t, A,Q, i) is O (C · n · q). Further, as each

computation requires at most q operations, the total complexity of computing the size of

P(n,A,C) is O(C · n · q2).

This leaves the problem of ranking n-weight Parikh vectors solving a system of linear

equations. Let R(w̄) denote the set of Parikh vectors in P(n,A,C) corresponding to a

Parikh word smaller than some given word w̄ ∈ Σ(A)n. The size of R(w̄), denoted |R(w̄)|,
is computed by partitioning R(w̄) into n sets denoted A(w̄, i) such that A(w̄, i) contains

every word v̄ ∈ R(w̄) where w̄[1,i−1] = v̄[1,i−1] and w̄i > v̄i. In this way, the set A(w̄, i)

can be thought of as the set of potential suffixes to the word w̄[1,i] such that for every

v̄ ∈ A(w̄, i), v̄ ≤ w̄[i+1,n] and A · P(w̄[1,i] : v̄) = C. Using these sets, the size of R(w̄) is

given by |R(w̄)| =
n∑
i=1

A(w̄, i).
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7.1.1 Computing the Number of Suffixes of Parikh Words

This sections shows how to count the size of the set A(w̄, i). Observe that every word

v̄ ∈ A(w̄, i) can be written as w̄[1,i−1] : v̄[i,n] where A·P(v̄[i,n]) = C−A·P(w̄[1,i−1]). Further,

as v̄ < w̄, v̄i < w̄i. Similarly, as v̄ is a Parikh word, v̄i ≥ w̄i−1. Note that v̄[i,n] must itself

be a Parikh word of size n − i solving the system of linear equations defined by matrix

A ∈ Nm,q and the vector C−A·P(w̄[1,i−1]). Therefore the number of possible values of v̄[i,n],

and hence the size of A(w̄, i), corresponds to
w̄i−1∑
j=w̄i−1

Count(n−i, A,A ·P(w̄[1,i−1])−w(j), j).

Hence the rank of w̄ equals:

|R(w̄)| =
n∑
i=1

w̄i−1∑
j=w̄i−1

Count(n− i, A,C−A · P(w̄[1,i−1])− w(j), j)

Theorem 19. The rank of w̄ among the set P(n,A,C) can be computed in at most O(C ·
n · q2) time, where C = C1 ·C2 · . . . ·Cm and q is the number of variables in the system of

linear equations.

Proof. Using the same dynamic programming approach as in Lemma 29, the value of

Count(i, A,Q, j) can be computed for every Q ∈ [C], i ∈ [n] and j ∈ [q], in at most

O(C ·n·q2) time. Using the equation |R(w̄)| =
n∑
i=1

w̄i−1∑
j=w̄i−1

Count(n−i, A,C−A·P(w̄[1,i−1])−

w(j), j), the size of R(w̄) can be computed in O(n·q) time once the size of Count(i, A,Q, j)

has been computed for every value of Q ∈ [C], i ∈ [n] and j ∈ [q]. As the precomputation

of Count(i, A,Q, j) can be done separately to the computation of |R(w̄)|, the total time

complexity of this process is at most O(C · n · q2) time.

7.1.2 Unranking n-Weight Parikh Vector Solutions to Linear Diophan-

tine Equations

Complementing the ranking results given in Theorem 19, the next problem we consider is

that of unranking the set P(n,A,C). Recall that the unranking problem asks for the ith

member of an ordered set, in this case the set of Parikh words corresponding to the Parikh

vectors in P(n,A,C). The unranking process is done by iteratively computing the prefix

of the ith Parikh vector in increasing length of prefix of the Parikh word. Note that this

is the same high level approach as used in the bracelet setting in Theorem 15. Lemma
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30 provides the technical background for both the unranking approach, and the k-centre

problem.

Lemma 30. The number of Parikh vectors in P(n,A,C) where the prefix of the Parikh

word is ā ∈ Σ(A)∗ can be computed in O(C · n · q2) time, where C = C1 ·C2 · . . . ·Cm and

q is the number of variables in the system of linear equations.

Proof. Following Theorem 19, the number of Parikh vectors corresponding to Parikh words

with a prefix smaller than ā can be computed using |R(ā : ā
n−|ā|
|ā| )|. Similarly the number

of Parikh vectors represented with a word with a prefix smaller than or equal to ā is given

by |R(ā : qn−|ā|)|+1. Therefore the total number of words sharing a given prefix ā is given

by |R(ā : qn−|ā|)|+ 1− |R(ā : ā
n−|ā|
|ā| )|. As the sizes of R(ā : qn−|ā|) and R(ā : ā

n−|ā|
|ā| ) can

be computed in O(C · n · q2) time, the total complexity of this process is O(C · n · q2).

Lemma 30 provides the basis for both the k-centre problem and the unranking process.

The k-centre problem for this set is discussed in Theorem 13. For the unranking problem,

at a high level, the idea is to use take the prefix of length j and extend it using a binary

search on the alphabet Σ(A). By repeating this process n times, the ith solution can be

found.

Theorem 20. The ith Parikh vector in the set P(n,A,C) can be found in O(C · n2 · q2 ·
log(q))) time where C = C1 ·C2 · . . . ·Cm and q is the number of variables in the system

of linear equations.

Proof. Let w̄ be the Parikh word corresponding to the ith Parikh vector in P(n,A,C).

In order to determine the first symbol of w̄, observe that |R(w̄n1 )| ≤ i ≤ |R(w̄1 : qn−1)|.
By preforming a binary search on the set of symbols Σ(A), the value of the first symbol

can be determined in log(q) steps, each requiring two words to be ranked giving a total of

O(C · n · q2 · log(q))) time. More generally, the jth symbol of w̄ can be determined from

the first j − 1 symbols. As with the first symbol, the jth can be determined as the symbol

x ∈ Σ(A) where |R(w̄[1,j−1] : xn−j+1)| ≤ i ≤ |R(w̄[1,j−1] : x : qn−j)|. As there are n

symbols to determine for w̄, the total amount of time required to compute the ith Parikh

vector is O(C · n2 · q2 · log(q)).
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7.2 Necklaces with n-Weight Parikh Vectors

7.2.1 Counting Necklaces with n-Weight Parikh Vectors

Following the results from the Section 7.1, the next step is to generalise to the set of

necklaces corresponding to Parikh vectors solving a given set of linear equations. As with

the set P(n,A,C), we consider three problems, those of counting, ranking and unranking

the set N n
q (A,C). The first problem we consider is that of computing the size of N n

q (A,C).

Recall that the set N n
q (A,C) contains every necklace w̃ ∈ N n

q such that A ·P(w̃) = C for

some m× q matrix A ∈ Zm,q and vector C ∈ Zm of length m. For notation, let Q(A,C, n)

return the number of words w̄ ∈ Σ(A) such that A · P(w̄) = C Following the classical

arguments for counting the number of necklaces such as those provided by Knuth et al.

[59], the size of N n
q (A,C) is given by:

|N n
q (A,C)| = 1

n

∑
d|n

φ
(n
d

)
Q

(
A,

C

d
, d

)
Where φ(x) is Euler’s totient function, returning the number of positive integers co-prime

to x and C
d =

(
C1
d ,

C2
d , . . . ,

Cq
d

)
. This leaves the problem of computing Q(A,C, n). This

is done in a recursive manner. Observe that the number of words counted by Q(A,C, n)

for which the first symbol is x ∈ Σ(A) equals Q(A,C − w(x), n − 1). As in Section 7.1,

w(x) is used to denote the vector corresponding to the xth column of A ∈ Nm,q. Therefore,

for n ≥ 1, Q(A,C, n) =
∑

x∈Σ(A)

Q(A,C− w(x), n− 1). The value of Q(A,C, 0) is either 1,

if C = 0, or 0 if Ci 6= 0 for any i ∈ [q]. Hence Q(A,C, n) is given by:

Q(A,C, n) =


∑

x∈Σ(A)

Q(A,C− w(x), n− 1) n > 0

1 n = 0 and C = 0

0 n = 0 and C 6= 0

Lemma 31. The value of Q(A,C, n) can be computed in O(q · n · C) time, where C =

C1 ·C2 · . . . ·Cm and q is the number of variables.

Proof. Using the above equation, the value of Q(A,C, n) may be computed in O(q) time

if the value of Q(A,P, n − 1) has been computed for every P ∈ [C]. Further, the value

of Q(A,P, 0) can be computed in O(m) time. Therefore, by computing Q(A,P, n) in
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increasing value of n for all C possible values of P ∈ [C], every value of Q(A,P, n) can be

computed in O(q · n · C) time.

Theorem 21. The number of necklaces corresponding to n-weight Parikh vectors solving

the system of linear equations defined by the m × q matrix A ∈ Nm,q and vector C ∈ Nm

of length m can be computed in O(q · n ·C) time, where C = C1 ·C2 · . . . ·Cm and q is the

number of variables.

Proof. Following Lemma 31, the value of Q(A,P, i) can be computed in at most O(q ·n ·C)

time for every i ∈ [n] and P ∈ [C]. Similarly, the value of φ (i) can be computed in at

most O(n) time. Assuming the value of Q(A,P, i) has been precomputed for every value

of i ∈ [n] and P ∈ [C], and the value of φ(i) precomputed for i ∈ [n], the size of N n
q (A,C)

can be computed in O(n) time. Therefore as the precomputation of Q(A,P, i) dominates

this process, the total complexity is O(q · n · C).

7.2.2 Ranking n-Length Necklaces with Parikh Vector Solving a System

of Linear Diophantine Equations

Using the counting approach outlined in Section 7.2.1 as a basis, the next problem we

consider is how to rank these necklaces in lexicographical order. Let RN(w̃, n,A,C) be

the rank of a necklace w̃ in N n
q (A,C). At a high level, this rank is computed in the same

manner as for unconstrained necklaces, using the set of words belonging to a necklace class

smaller than w̃ as a basis. For notation, let S(A,C, n, w̃) be the set of words belonging to

a necklace class in N n
q (A,C) smaller than w̃, i.e. S(A,C, n, w̃) = {〈ṽ〉i|ṽ ∈ N n

q (A,C), ṽ <

w̃, i ∈ [n]}. The following technical Lemma lays the foundations for ranking within the set

N n
q (A,C).

Lemma 32. The rank of a necklace w̃ in the set N n
q (A,C) is given by the equation

RN(w̃, n,A,C) =
∑
d|n

1
d

(∑
l|d
µ
(
d
l

)
|S(w̃, l, A, l·Cn )|

)

Proof. In order to use the size of S(A,C, n, w̃) to compute the rank of w̃, the subset of

aperiodic necklaces in N n
q (A,C) is used. Let RL(w̃, n,A,C) be the number of length

n aperiodic necklaces in N n
q (A,C) smaller than w̃. Observe that RN(w̃, n,A,C) =∑

d|n
RL(w̃, d, A, d·Cn ).
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In order to compute RL(w̃, n,A,C), let S′(A,C, n, w̃) ⊆ S(A,C, n, w̃) be the subset

of S(A,C, n, w̃) containing all aperiodic words in S(A,C, n, w̃), i.e. S′(A,C, n, w̃) = {v̄ ∈
Σ(A)n : A · P(v̄) = C, 〈v̄〉 < w̃, v̄ is aperiodic }. Note that as every aperiodic necklace of

length n contains n representative in S′(w̃, n,A,C) RL(w̃, n,A,C) = |S′(w̃,n,A,C)|
n .

This leaves the problem of computing the size of S′(w̃, n,A,C). Note that the size of

S(w̃, n,A,C) is given by |S(w̃, n,A,C)| =
∑
d|n
|S′(w̃, n,A,C)|. By applying the Möbius

inversion formula the size of S′(w̃, n,A,C) can be counted in terms of S(w̃, n,A,C) as

|S′(w̃, n,A,C) =
∑
d|n
µ
(
n
d

)
|S(w̃, d, A, d·Cn )|. Putting this together gives RN(w̃, n,A,C) =

∑
d|n

1
d

(∑
l|d
µ
(
d
l

)
|S(w̃, l, A, l·Cn )|

)

Lemma 32 leaves the problem of determining the size of S(w̃, n,A,C). The size of

S(w̃, n,A,C) is computed by partitioning the set into the subsets A(i, j, w̃, n,A,C) where

A(i, j, w̃, n,A,C) contains every word v̄ ∈ S(w̃, n,A,C) where:

• i is the smallest translation of v̄ such that 〈v̄〉i ≤ 〈w̃〉.

• j is the length of the longest prefix of 〈v̄〉i that is also a prefix of 〈w̃〉, i.e. the largest

value such that (〈v̄〉i)[1,j] = (〈w̃〉)[1,j].

The size of A(i, j, w̃, n,A,C) is computed by considering two cases based on the value of

i+ j relative to n.

Case 1. i + j < n: In this case every word v̄ ∈ A(i, j, w̃, n,A,C) can be written as

ā : (〈w̃〉)[1,j] : b : c̄ where:

• ā is a word of length i such that every suffix of ā is greater than than prefix of (〈w̃〉)
of the same length, i.e. ā[i−l:i] = (〈w̃〉)[1:l].

• b ∈ Σ(A) is some symbol smaller than (〈w̃〉)j+1.

• c̄ is unconstrained other than that A · P(ā : (〈w̃〉)[1,j] : x : c̄) = C.

To compute the number of possible values of ā, the function α(w̃, i, j, A,C
′
) is introduced.

Formally, α(w̃, i, j, A,C) counts the number of words v̄ ∈ Σ(A)x such that (1) v̄[i−l,i] >

〈w̃〉[1,l] for every l ∈ [0, i− 1] (2) v̄[1,j] = 〈w̃〉[1,j] and (3) A · P(v̄) = C
′
.
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The value of α(w̃, i, j, A,C
′
) can be computed in a similar manner to the Q(n,A,C).

Note that every word counted by α(w̃, i, j, A,C
′
) must have, as the (j + 1)th symbol some

symbol greater than or equal to 〈w̃〉j+1. The number of words with the symbol x > 〈w̃〉j+1

at position j + 1 equals α(w̃, i− j − 1, 0, A,C
′ −A · P(〈w̃〉[1,j] : x)). Similarly the number

of words counted by α(w̃, i, j, A,C
′
) where the symbol at position j + 1 is 〈w̃〉j+1 is given

by α(w̃, i, j + 1, A,C
′
). In the case where i = j, the size of α(w̃, i, j, A,C

′
) is either 1, if

j = 0 and C
′
= 0, or 0 otherwise. Using these observations the value of α(w̃, i, j, A,C

′
) is

given by:

α(w̃, i, j, A,C
′
) =


α(w̃, i, j + 1, A,C

′
)+

q∑
x=(〈w̃〉)j+1

α(w̃, i− j − 1, 0, A,C
′ −A · P(〈w̃〉[1,j] : x))

 i > j

1 i = j = 0,C
′
= 0

0 i = j > 0

0 i = j = 0,C
′ 6= 0

Let P be the Parikh vector of ā. The number of values of b is given by:

(〈w̃〉)j+1−1∑
b=1

1 (A · (P + P(b)))i ≤ Ci, ∀i ∈ [m]

0 otherwise
.

Similarly, given the value of b, the number of possible values of c̄ is computed by Q(n− i−

j− 1, A,C− (P + P(b))). Let β(w̃, i, j, A,C
′
) =

(〈w̃〉)j+1−1∑
b=1

Q(n− i− j− 1, A,C
′−A ·P(b)).

Combining these observations, the size of A(i, j, w̃, n,A,C) is given by:

|A(i, j, w̃, n,A,C)| =
∑

Q∈[C]

α(w̃, i, 0, A,Q) · β(w̃, i, j, A,C−Q)

Case 2. i + j ≥ n: In this case, every word v̄ ∈ A(i, j, w̃, n,A,C) can be written as

(〈w̃〉)[i+j−n,j] : b : ā : (〈w̃〉)[1,i+j−n−1] where:

• Every suffix of (〈w̃〉)[i+j−n,j] : b : ā is greater than the prefix of 〈w̃〉 of the same
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length.

• b ∈ Σ(A) is a symbol such that b < (〈w̃〉)j+1.

Let s be the length of the longest suffix of (〈w̃〉)[i+j−n,j] that is a prefix of 〈w̃〉. Formally,

let s be the largest value such that ((〈w̃〉)[i+j−n,j])[n−i−s,n−i] = (〈w̃〉)[1,s]. Note that for

every suffix of (〈w̃〉)[i+j−n,j] : b : ā to be greater than the prefix of the same length, b

must be greater than or equal to (〈w̃〉)s+1. The number of possible values of ā is either

α(w̃, n − j − 1, 0, A,C − A · (P((〈w̃〉)[1,j] : b))), if b > (〈w̃〉)s+1, or α(w̃, n − j + s, s +

1, A,C−A · (P ((〈w̃〉)[1,j+1]))) if b = 〈w̃〉)[1,j+1]. This gives the size of A(i, j, w̃, n,A,C) as:

|A(i, j, w̃, n,A,C)| =α(w̃, n− j + s, s+ 1, A,C−A · (P ((〈w̃〉)[1,j] : (〈w̃〉)[s+1)))+

(〈w̃〉)j+1−1∑
b=(〈w̃〉)s+1+1

α(w̃, n− j − 1, 0, A,C−A · (P ((〈w̃〉)[1,j] : b)))

Theorem 22. The rank of a necklace w̃ among the set N n
q (A,C) can be found in O(q·n2·C)

time, where C = C1 ·C2 · . . . ·Cm and q is the number of variables in the system of linear

equations.

Proof. From Lemma 32, the rank of w̃ can be computed in at most O(n2) time if the size of

S(w̃, d, A, d·Cn ) has been precomputed for every factor d of n. In order to compute the size

of S(w̃, d, A, d·Cn ), it is sufficient to compute the size of A(i, j, w̃, d, A,C) for every i, j ∈ [d].

Assuming the size of A(i, j, w̃, d, A,C) has been precomputed for every i, j ∈ [d], the size

of S(w̃, d, A, d·Cn ) can be computed in O(n2) time. The size of A(i, j, w̃, d, A,C) may be

computed in O(n2 · C) time if α(w̃, i, j, A,P) and β(w̃, i, j, A,P) has been computed for

every i, j ∈ [n], P ∈ [C].

This leaves the problem of computing α(w̃, i, j, A,C) and β(w̃, i, j, A,C). The value

of α(w̃, i, j, A,C) can be computed in O(q) time if the value of α(w̃, i, j + 1, A,C) and

α(w̃, i − j − 1, 0, A,C
′
) has been precomputed for every C

′ ∈ [P]. Further, the value of

α(w̃, i, i, A,C
′
) may be computed in O(m) time for any set of arguments. Therefore by

starting with i = j = 0, the value of α(w̃, i, j, A,C) can be computed in a dynamic manner

for increasing values of i, j and C. As there are O(n2 · C) possible values of i, j ∈ [n] and

C
′ ∈ [C], the total complexity of precomputing each value of α(w̃, i, j, A,C) is O(q ·n2 ·C).

Following Lemma 31, the value of β(w̃, i, j, A,C) can be computed in O(q · n · C) time.
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Therefore the overall complexity of computing the rank of w̃ in the set of necklaces with

Parikh vectors solving can be O(q · n2 · C) time.

7.2.3 Unranking N n
q (A,C)

As with the set P(n,A,C), we consider the problem of unranking the set N n
q (A,C).

Following the same steps outlined in Section 7.1.2, the first problem is to count the number

of necklaces in N n
q (A,C) sharing a given prefix ā.

Lemma 33. The number of necklaces in N n
q (A,C) sharing a given prefix ā ∈ Σ(A) can

be computed in O(q · n2 · C) time, where C = C1 · C2 · . . . · Cm and q is the number of

variables in the system of linear equations.

Proof. Observe that the number of necklaces sharing a given prefix is given by RN(ā :

qn−|ā|) + 1−RN(ā|a|/n). As the rank of a necklace can be computed in O(q · n2 ·C) time,

the number of necklaces sharing a common prefix can be computed in O(q ·n2 ·C) time.

Lemma 33 provides the basis for both the unranking procedure and the k-centre algorithm.

The high level idea for the unranking procedure is to use a binary search on Σ(A) to

determine the jth symbol of the ith necklace in increasing order of j. The following theorem

outlines the unranking process.

Theorem 23. The ith member of N n
q (A,C) can be computed in O(q · log(q) ·n3 ·C) time,

where C = C1 · C2 · . . . · Cm and q is the number of variables in the system of linear

equations.

Proof. Following the same process laid out in Theorem 20, the ith necklace w̄ can be found

by progressively building the prefix of w̄ from length 1 to n. At each step, a binary search

over the set of symbols in Σ(A) requiring 2 log(q) necklaces to be ranked. Therefore to

compute w̄, a total of 2n · log(q) necklace must be ranked. This gives the total complexity

of O(q · log(q) · n3 · C).

Corollary 7. The set N n
q (A,C) can be generated in lexicographic order in no more than

O(q · log(q) · n3 ·C) time per necklace, where C = C1 ·C2 · . . . ·Cm and q is the number of

variables in the system of linear equations.

Proof. This bound may be achieved by simply using the unranking algorithm for i from 1

to |N n
q (A,C)|.
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7.3 Necklaces with Forbidden Subwords

The second type of constrained necklace that we consider in this section is the set of

necklace with forbidden subwords. In many ways this is a more challenging problem

compared to either the general or the Diophantine equation cases due to the cyclic nature

of necklaces. Unlike with an non-cyclic word, when counting the number of cyclic words

without a given forbidden word, it must be ensured that it does not occur for any shift,

as opposed to just one. This is further complicated when considering multiple forbidden

words, where it must be checked that no forbidden word occurs for any translation.

In order to sample from the set of necklaces with forbidden subwords, some notation

must be defined. Let F be the set of words that are forbidden from appearing as subwords

within the set of necklaces. We denote by N n
q (F) the set of all necklaces over an alphabet

of size q of length n without any word from F appearing as a subword. Ruskey and Sawada

[90] computed the size of N n
q (F) as

|N n
q (F)| = 1

n

∑
d|n

φ(d)|Fn/d
q (F)|, (7.1)

where Fn
q (F) is the set of words of length n over the alphabet of size q containing no

subword in F . The number of Lyndon words of length n with not containing any subword

in F , denoted |Lnq (F)|, is given relative to the number of necklaces, using the equation:

|Lnq (F)| =
∑
d|n

µ(d) · |N n/d
q (F)|. (7.2)

Before introducing the functions for ranking and unranking N n/d
q (F), some theoretical

results must be established. Let T(w̄,F) be the set of words belonging to a necklace

class in N n
q (F) smaller than w̄, i.e. T(w̄,F) = {v̄ ∈ Σ|w̄||v̄ ∈ ṽ, ṽ ∈ N |w̄|q (F), 〈ṽ〉 ≤ w̄}.

Additionally in order to rank words amongst N n
q (F) the subset T′(w̄,F) ⊆ T(w̄,F) of

aperiodic words is needed. Formally, T′(w,F ) = {v̄ ∈ Σ|w̄||v̄ ∈ ṽ, ṽ ∈ L|w̄|q (F), 〈ṽ〉 ≤ w̄}.

Lemma 34. The size of T(w̄,F) is given by
∑
d|n
|T′(w̄[1,d],F).

Proof. Observe that every word in the set T(w̄,F) is either aperiodic, in which case it

belongs also to the set T′(w̄,F), or it is periodic. If it is periodic, the period must be some

value that is a factor of n. Given some word with a period d, if it is smaller than w̄, then it
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occurs in the set T′(w̄[1,d],F). By definition, any word greater than w̄ does not appear in

any set T′(w̄[1,d], F ) for any factor d of n. As each set T′(w̃[1,d],F) consists only of aperiodic

words, there can be no word that occurs in both T′(w̄[1,d],F) and T′(w̄[1,e],F) for d 6= e.

Therefore the size of T(w̄,F) can be computed as |T(w̄,F) =
∑
d|n
|T′(w̄[1,d],F).

By application of the Möbius inversion formula to |T(w̄,F)| =
∑
d|n
|T′(w̄[1,d],F)|, an equa-

tion for the size of T′(w̄,F) can be derived as:

|T′(w̄,F)| =
∑
d|n

µ
(n
d

)
|T(w̄[1,d],F)|. (7.3)

These equations form the basis for ranking w̄. Starting with the rank of w̄ within the set

Lnq (F). The rank within the set of Lyndon words is used to compute the rank within the

set of necklaces following the same logic outlined in Lemma 34.

Lemma 35. The number of Lyndon words without any forbidden subword in F that are

smaller than some word w̄ is given by RL(w̄,F) = 1
|w̄| · |T

′(w̄,F)|.

Proof. As every Lyndon word is aperiodic, each Lyndon word of length |w̄| has |w̄| unique

translations. Hence, for any word w̄ each Lyndon word smaller than w̄ appears |w̄| times

within T′(w̄,F).

Lemma 36. The number of necklaces smaller than w without any forbidden subword in

F is equal to RN(w̄,F) =
∑
d||w̄|

1
|w̄| ·T

′(w̄[1,d],F).

Proof. It follows from Lemma 34 that all necklaces smaller than w̄ are either aperiodic,

or periodic with a period that is a factor of the length of the necklace. From Lemma 35,

the necklaces that are smaller than w̄ and are aperiodic is 1
|w̄| · T

′(w̄,F). Similarly, the

necklaces with a period of some factor d of |w̄| are 1
|w̄| · |T

′(w̄[1,d],F)|.

The problem now becomes computing the size of T(w̄,F). To do this, the set is partitioned

into the sets A(t, j,F) such that for every word v̄ ∈ A(t, j,F) the following hold:

• t is the smallest translation such that 〈v̄〉t is smaller than w̄, i.e. 〈v̄〉t < w̄.

• Under the translation by t, j is the length of the longest prefix of 〈v̄〉t that is also a

prefix of w̄, i.e. (〈v̄〉t)[1,j] = w̄[1,j].
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The size of A(t, j,F) is computed by considering two possible cases based on the value of

t+ j.

Case 1, t + j < n: In this case, every word in A(t, j,F) is of the form β̄ : w̄[1,j] : x : ρ̄

where:

• β̄ is some word of length t with no forbidden subword such that every suffix is greater

than w̄;

• w̄[1,j] is the prefix of w̄ of length j;

• x is a symbol smaller than w̄j+1;

• ρ̄ is a word with no restrictions other than having no forbidden substrings.

To compute the number of possible words satisfying ρ̄ and β̄, we define the function

B(w̄, l, t, j, p̄, s̄). A full definition of this function is given in Section 7.3.1. At a high

level, this function works similarly to the class PO(v̄, i, j, s) from Chapter 6. The func-

tion works in two phases. The first phase to compute the number of possible values of β̄,

followed by computing the values of ρ̄. The word p̄ corresponds to the longest suffix of

w̄[1,j] : x that is a prefix of some forbidden word in F . Similarly s̄ corresponds to either

w̄[1,j] : x if w̄[1,j] : x is a subword of some word in F , or the longest prefix of w̄[1,j] : x that

is the suffix of a word in F otherwise. The values l, t ∈ N are used to denote the lengths

of ρ̄, and β̄ respectively. Finally j is a helper value for tracking the longest prefix of w̄

that is a prefix of the words counted by B(w̄, l, t, j, p̄, s̄). Using B(w̄, l, t, j, p̄, s̄), the size of

A(w̄, t, j,F) can be computed as:

|A(w̄, t, j,F)| =
w̄j+1−1∑
x=1

B(w̄, l, t, j, P (w̄[1,j] : x), S(w̄[1,j] : x)) f̄ 6v w̄[1,j] : x, ∀f̄ ∈ F

0 Otherwise.

Where P (w̄[1,j] : x) returns the longest suffix of w̄[1,j] : x that is the prefix of some forbidden

subword in F , and S(w̄[1,j] : x) returns either w̄[1,j] : x, if w̄[1,j] : x v f̄ for some f̄ ∈ F , or

the longest prefix of w̄[1,j] : x that is the suffix of some forbidden subword in F otherwise.
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Case 2, j+t ≥ n: In this case every word in A(t, j,F) has the form w̄[s,j] : x : β̄ : w̄[1,s−1].

Let δ be the length of the longest prefix of w̄ that is a suffix w̄[s,j]. If x < w̄δ+1, then the shift

by s−δ would be smaller than w̄. Therefore x must be greater than or equal to w̄δ+1. If x =

w̄δ+1 then every suffix of w̄[1,δ+1] : β̄ must be greater than the prefix of w̄ of the same length.

The number of such words is computed using B(w̄, n−j−1, δ+1, 0, P (w̄[1,δ+1], S(w̄[1,δ+1])).

Alternatively, if x > w̄δ+1 and w̄[s,j] : x contains no forbiden subword, then the number of

possible values for β̄ is B(w̄, n − j − 1, 0, 0, P (w̄[s,j] : x), S(w̄[s,j] : x)). From this, the size

of A(w̄, t, j,F) can be computed as:

|A(w̄, t, j,F)| =B(w̄, n− j − 1, δ + 1, 0, P (w̄[1,δ+1], S(w̄[1,δ+1]))+

w̄j+1−1∑
x=w̄δ+1+1

B(w̄, n− j − 1, 0, 0, P (w̄[s,j] : x), S(w̄[s,j] : x)) w̄[s,j] : x 6∈ F

0 Otherwise.

Section 7.3.1 provides the full details on how to compute B(w̄, l, t, j, p̄, s̄). Theorem 24

treats B(w̄, l, t, j, p̄, s̄) as a black box that can be computed in O(n8 · |F|2) time using

Lemma 41.

Theorem 24. The rank of a word amongst all necklaces without any forbidden subword

may be computed in O(q · n8 · |F|3).

Proof. It follows from Lemma 41 that the value of B(w̄, l, j, t, p̄, s̄) can be computed for

every value of l, j, t ∈ [n], p̄ ∈ {f̄[1,i]|f̄ ∈ F , i ∈ [|f̄ |]} and s̄ ∈ {ū v f̄ |f̄ ∈ F , ū is a suffix

of f̄ or |ū| = n − (t + l)} in O(n8 · |F|2) time. Assuming that these values have been

precomputed, the size of A(w̄, j, t,F) can be computed in O(q · n · |F|) time following the

two cases above. As the process of computing the size of A(w̄, j, t,F) is dominated by the

precomputation of B(w̄, l, j, t, p̄, s̄), the total time to compute |A(w̄, j, t,F)| is O(n8 · |F|2).

Following Lemma 36, the number of Necklaces may be computed by summing the size

of T′(w̄[1,d],F) for every factor d of n. Note that there are at most log2(n) factors of n.

The size of T′(w̄,F) can be computed using Lemma Equation 7.3. In the worst case there

are O(log n) sets of T(w̄[1,d],F), each of which taking at most O(n8 · |F|2) time to compute.

Putting this together, the total time complexity is O(q · n8 · |F|3).
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7.3.1 Computing the Number of Prefixes Greater than w̄ with Forbidden

Subwords

This section shows how to compute B(w̄, l, j, t, p̄, s̄). For notation let B(w̄, l, j, t, p̄, s̄) be the

set of words counted by B(w̄, l, j, t, p̄, s̄). Following the informal definition given above, the

set B(w̄, l, j, t, p̄, s̄) is defined as the set of words such that for every v̄ ∈ B(w̄, l, j, t, p̄, s̄):

• v̄ has a length of l + t

• The cyclic word w̄[1,n−l−t−1] : ū : v̄ contains no forbidden subword from the set F for

some word ū ∈ Σ∗ where:

– The suffix of ū of length j equals w̄[1,j].

– p̄ is the longest suffix of ū that is the prefix of some forbidden subword.

– s̄ is either the longest prefix of w̄[1,n−l−t−1] : ū that is the suffix of a forbid-

den word, or equals w̄[1,n−l−t−1] : ū if w̄[1,n−l−t−1] : ū is the subword of some

forbidden word.

• Every suffix of v̄[l+1,l+t] is greater than the prefix of w̄ of the same length, i.e. for

every i ∈ [t], v̄[l+i,l+t] ≥ v̄[1,t−i+1].

• If l = 0, then every suffix of ū : v̄ is greater than the prefix of w̄ of the same length.

At a high level the idea the key observation is that for every word v̄ ∈ B(w̄, l, j, t, p̄, s̄), the

suffix v̄[2,l+t] must belong to some set B(w̄, l′, j′, t′, p̄′, s̄′). The following Lemmas serves to

formalise this observation in a useful way for computing the size of B(w̄, l, j, t, p̄, s̄).

Lemma 37. Let v̄ ∈ B(w̄, l, j, t, p̄, s̄) be a word such that v̄[2,t+l] ∈ B(w̄, l′, j′, t′, p̄′, s̄′), then

the values of l′, j′, t′, p̄′, and s̄′ can be determined from the values of v̄1 and the values of

l, j, t,P,S in O(n2 · |F|) time.

Proof. The value of p̄′ is simply the longest suffix of p̄ : v̄1 that is a prefix of some forbidden

word f̄ ∈ F . Through the use of pattern matching algorithms such as the Knuth-Morris-

Pratt algorithm applied to each forbidden subword, this can be computed in O(n · |F|)
time. Similarly, the value of s̄′ is either:

• s̄, if |s̄| < n− (t+ l).

• s̄ : x if s̄ : x is a subword of some forbidden subword.
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• the longest prefix of s̄ : x that is a suffix of some forbidden subword otherwise.

As there are n possible subwords for each of the forbidden subwords, using a pattern

matching algorithm the total complexity of computing s̄′ is O(n2 · |F|). The value of l′ is

either l−1, if l > 0 or 0 if l = 0. Similarly, the value of t′ is either t, if l > 0 or t−1 if l = 0.

Finally, the value of j′ is either 0, if l > 0 or l = 0 and v̄1 6= w̄j+1, otherwise j′ = j + 1. As

the complexity is dominated by the process of computing p̄′ and s̄, the overall complexity

is O(n2 · |F|).

Lemma 38. Let v̄ ∈ B(w̄, l, j, t, p̄, s̄) be a word such that v̄[2,t+l] ∈ B(w̄, l′, j′, t′, p̄′, s̄′), then

for any word v̄′ ∈ B(w̄, l′, j′, t′, p̄′, s̄′), v̄1 : v̄′ ∈ B(w̄, l, j, t, p̄, s̄).

Proof. Following the arguments of Lemma 37, the values of l′, j′, t′, p̄′, and s̄′ are determined

solely by the values of w̄, l, j, t, p̄, s̄ and v̄1. Note that any word v̄′ ∈ B(w̄, l′, j′, t′, p̄′, s̄′),

must also satisfy the conditions that (1) p̄′ : v̄′ : s̄′ contains no word in F as a subword for

and (2) if |s̄′| = n− (l+ t) there is no subword of the cyclic word w̄ : s̄′ that is a forbidden

subword. Therefore, v̄1 : v̄′ must also belong to B(w̄, l, j, t, p̄, s̄).

Lemmas 37 and 38 provide the foundational tools to compute B(w̄, l, j, t, p̄, s̄). At a high

level, the idea is to use a dynamic programming approach similar to Lemma 19, starting

with the case where l = t = 0 then working with increasing values of l and t. Following

Lemma 38, the size of B(w̄, l, j, t, p̄, s̄) can be computed by looking at every possible value

of the first symbol, and the size of the corresponding sets B(w̄, l′, j′, t′, p̄′, s̄′), derived

using Lemma 37. Lemmas 39 and 40 provide the equations for computing the size of

B(w̄, l, j, t, p̄, s̄) in the case that l > 0 and l = 0 respectively.

Lemma 39. For any l > 0, the size of B(w̄, l, j, t, p̄, s̄) is given by:

∑
x∈Σ

B(w̄, l(x), j(x), t(x)p̄(x), s̄(x)) p̄ : x /∈ F

0 p̄ : x ∈ F

Where l(x), j(x), t(x)p̄(x), and s̄(x) are computed as in Lemma 37.

Proof. Following Lemmas 37 and 38, every word v̄ ∈ B(w̄, l, j, t, p̄, s̄) sharing the same first

symbol x must have a suffix in B(w̄, l(x), j(x), t(x)p̄(x), s̄(x)). Further, there can be no

word in B(w̄, l, j, t, p̄, s̄) starting with any symbol x ∈ Σ where p̄ : x ∈ F . Therefore, the

size of B(w̄, l, j, t, p̄, s̄) equals
∑
x∈Σ

B(w̄, l(x), j(x), t(x)p̄(x), s̄(x)) p̄ : x /∈ F

0 p̄ : x ∈ F
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Lemma 40. The size of B(w̄, 0, j, t, p̄, s̄) is given by:

q∑
x=w̄j+1

B(w̄, 0, j(x), t(x)p̄(x), s̄(x)) p̄ : x /∈ F

0 p̄ : x ∈ F

Where w̄, j(x), t(x)p̄(x), and s̄(x) are computed as in Lemma 37.

Proof. Note that as l = 0, by the definition of the set B(w̄, 0, j, t, p̄, s̄), w̄[1,j]v̄ > w̄ for any

v̄ ∈ B(w̄, 0, j, t, p̄, s̄). Therefore, the first symbol of every word in B(w̄, 0, j, t, p̄, s̄) must be

no smaller than w̄j+1. Other than this restriction, the same arguments from Lemma 39

can be applied to this setting, giving the equation:

|B(w̄, 0, j, t, p̄, s̄)| =
q∑

x=w̄j+1

B(w̄, 0, j(x), t(x)p̄(x), s̄(x)) p̄ : x /∈ F

0 p̄ : x ∈ F

Lemmas 39 and 40 provide the equations needed to compute the size of B(w̄, l, j, t, p̄, s̄).

Lemma 41 compliments these Lemmas by providing an upper bound on the time complexity

to compute the size of B(w̄, l, j, t, p̄, s̄).

Lemma 41. The size of B(w̄, l, j, t, p̄, s̄) can be computed in O(q · n8 · |F|3) time.

Proof. Following Lemmas 39 and 40, the size of B(w̄, 0, j, t, p̄, s̄) can be computed inO(q·n2·
|F) time if the size of B(w̄, l(x), j(x), t(x), p̄(x), s̄(x)) is known for every x ∈ Σ. Note further

than B(w̄, 0, j, 0, p̄, s̄) can be computed in O(n·|F|2) time by noting that it equals 0, if either

j > 0 or p̄ : s̄ contains a forbidden subword, or 1 if none of these conditions hold. Therefore,

a dynamic programming approach can be employed starting with B(w̄, 0, j, 0, p̄, s̄) for every

j ∈ [n], p̄ ∈ {f̄[1,i]|f̄ ∈ F , i ∈ [|f̄ |]} and s̄ ∈ {ū v f̄ |f̄ ∈ F , ū is a suffix of f̄ or |ū| =

n− (t+ l)}.
From this base case, the size of B(w̄, l, j, t, p̄, s̄) is then computed in increasing value

of l and t, such that B(w̄, l, j, t, p̄, s̄) is computed before either B(w̄, l + 1, j′, t, p̄′, s̄′) or

B(w̄, l, j′, t+ 1, p̄′, s̄′) for any j′ ∈ [n], p̄′ ∈ {f̄[1,i]|f̄ ∈ F , i ∈ [|f̄ |]} and s̄′ ∈ {ū v f̄ |f̄ ∈ F , ū
is a suffix of f̄ or |ū| = n−(t+l+1)}. As there are O(n) possible value of l, j and t, O(n·|F)

possible values of p̄ and O(n2·|F|) possible values of s̄, this dynamic programming approach

requires the size of O(n6 · |F|2) sets to be computed. As each set takes at most O(q ·n2 · |F)

time, the total complexity of computing the size of B(w̄, l, j, t, p̄, s̄) is O(q · n8 · |F|3).
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7.3.2 Unranking Necklaces with Forbidden Subwords

Using the same approach as in Theorems 15, 20 and 23 the set of necklaces with forbidden

subwords may be unranked by first determine the number necklaces sharing a given prefix.

To this end, Lemma 42 is introduced to serve an analogous function to Lemmas 30 and 33.

Lemma 42. The number of necklaces with Forbidden with no subword in the set F sharing

a prefix ā can be computed in O(q · n8 · |F|3) time.

Proof. Note that the ranking algorithm outlined in Theorem 24 does not require that the

input word is free of forbidden subwords, only that the input is the canonical form of

some necklace. Hence the number of words sharing a given prefix can be determined by

taking the difference between the lexicographically smallest and largest necklaces sharing

a given prefix. The smallest necklace v̄ can be found in O(n) time using Theorem 28.

The largest necklace is simply ā : qn−|ā|. Therefore the number of necklaces sharing a

given prefix is given by Rank(ā : qn−|ā|,F)−Rank(v̄,F). From Theorem 24, the value of

Rank(ā : qn−|ā|,F) can be computed in O(q · n8 · |F|3) time.

Using Lemma 42 as a basis, the ith necklace with the set of forbidden subwords F can be

unranked using the same process as in Theorems 20 and 23.

Theorem 25. The ith necklace in Nn
q (F) can be found in O(log(q) · log2(n) · n9 · |F|2)

time.

Proof. Let w̄ be the canonical representation of the ith necklace in the set Nn
q (F). The first

symbol w̄1 can be computed by by performing a binary search over Σ to find the symbol

x such that Rank(xn) ≤ i ≤ Rank(x : qn−1). Using a binary search approach allows this

to be done in log(q) comparisons, giving a total time complexity of O(log(q) · q · n8 · |F|3).

Once the first symbol has been determined the second symbol can be found using the same

approach.

In general, once the first j − 1 symbols have been determined, the jth symbol can be

determined by finding the symbol x ∈ Σ as follows. Let v̄ be the canonical form of the

lexicographically smallest necklace such that v̄[1,j] = w̄[1,j−1] : x. The jth symbol of w̄ is x

if and only if Rank(v̄,F) ≤ i ≤ Rank(w̄[1,j−1] : x : qn−j).

As each symbol can be determined in log(q) comparisons, and a total of n symbols

need to be determined, a total of n · log(q) words need to be ranked. Therefore, the total

complexity of determining the ith necklace in Nn
q (F) is O(log(q) · q · log2(n) · n9 · |F|3)

time.



Chapter 8

Polynomial Time Algorithms for

Multidimensional Necklaces

The final object we look at are the class of multidimensional necklaces. As this work has

been the first to study this object, there are many fundamental to results to generalise

from the one-dimensional case to the multidimensional setting. In this chapter we provide

generalisations for several of these fundamental operations on multidimensional necklaces.

Section 8.1 provides closed form equations for counting the number of necklaces, Lyndon

words, and atranslational necklaces. These results are extended in Subsection 8.1.1 to

the fixed content setting. Section 8.2 provides our algorithm for ranking multidimensional

necklaces, with Subsection 8.2.2 extending our ranking result to the fixed content case. Sec-

tion 8.3 provides our techniques for generating and unranking multidimensional necklaces,

the unranking result being extended to the fixed content setting in the same section.

8.1 Counting of Multidimensional Necklaces

This section provides a comprehensive overview of the equations for counting the number of

necklaces, Lyndon words, and atranslational words. For both necklaces and Lyndon words,

explicit counting is done by application of the Pólya enumeration theorem to the group

operations defined in Chapter 2. The equations below are classical formulas for counting

the number of one-dimensional necklaces and one-dimensional Lyndon words respectively.

A classical proof for the Necklace Equation is provided by Graham et. al. [42], while Perrin

[80] provides a proof of the Lyndon word Equation.

141
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|N n
q | =

1

n

∑
d|n

φ
(n
d

)
qd. (8.1)

Lnq =
1

n

∑
d|n

µ
(n
d

)
qd. (8.2)

Where φ is Euler’s totient function and µ is the Möbius function. Formally, φ(n) gives the

number of natural numbers smaller than n which are co-prime to n, and µ(n) returns -1, 0,

or 1 depending on the prime factorisation of n. These equations form the starting point for

counting multidimensional necklaces. Recall from the preliminaries that multidimensional

necklaces of dimensions n are equivalence classes of words in Σn under the group Zn =

Zn1 ×Zn2 × . . .×Znd where × denotes the direct product and Zx the cyclic group of order

x. A straightforward way to compute the number of necklaces of dimensions n is by using

the Pólya enumeration formula, giving:

|Nn
q | =

1

N

∑
g∈Zn

qc(g).

Where g = (g1, g2, . . . , gd) is some group action in Zn and c(g) returns the number of cycles

from the group action g. Since Zn is formed by the direct product of the cyclic groups, for

each group action g we have that g = (g1, g2, . . . , gd), where 1 ≤ ij ≤ nj . Therefore, the

number of necklaces, |Nn
q |, is rewritten as:

|Nn
q | =

1

N

n1∑
g1=1

n2∑
g2=1

. . .

nd∑
gd=1

qc((g1,g2,...gd))

In order to determine the value of c(g), consider the permutation induced by g. Given

some position j = (j1, . . . , jd), let j′ be the position following j in the cycle induced by g,

i.e. j′ = j · g. The coordinate of j′ in the ith dimension is equal to the coordinate in the ith

dimension of j shifted by gi. Since this is a cyclic operation, this shift is done modulo the

length of dimension i, ni. This gives j′i = (ji + gi) mod ni.

Let gt denote the group action made by applying t times operation g to the identity

operation I, i.e. I · g · g . . . · g. The length of the cycle induced by some cyclic shift g is the

smallest value t > 0 such that j · gt = j. In other words, the length of the cycle equals the

number of times g must be applied to itself to become the identity operation. The length
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of this cycle is therefore the smallest t such that for every i, (ji + t · gi) mod ni ≡ ji. To

compute this, note that t must be divisible by the smallest value li for each dimension such

that (ji + li · gi) mod ni ≡ ji. As such, the smallest value t may have is the least common

multiple of every li. For any smaller non-zero value, there is some dimension i for which

(ji + t · gi) mod ni 6≡ ji. By the properties of modular addition, it is clear that every cycle

has the same length. Therefore, the number of cycles of length t is N
t .

This is rewritten as follows. Observe that the only possible values for li are divisors of

ni. For each divisor fi of ni, there are φ(nifi ) values for which fi = li. As this is independent

in each dimension, this is used to derive the following equation for the number of necklaces:

|Nn
q | =

1

N

∑
f1|n1

φ (f1)
∑
f2|n2

φ (f2) . . .
∑
fd|nd

φ (fd) q
N

lcm (f1,f2,...,fd) .

The necklace counting formula is used to compute the number of Lyndon words through

repeated application of the Möbius inversion formula, giving:

Ln
q =

∑
f1|n1

µ

(
n1

f1

) ∑
f2|n2

µ

(
n2

f2

)
. . .
∑
fd|nd

µ

(
nd
fd

)
|N f1,f2...fd

q |

Related to the concept of aperiodic necklaces are atranslational necklaces. Recall that

a necklace w̃ is atranslational if there exists no cyclic shift g ∈ Zn such that g 6=
(n1, n2, . . . , nd) and 〈w̃〉g = 〈w̃〉. Note that while every atranslational word is aperiodic,

not every aperiodic word is atranslational. Lemma 43 formally characterises the aperiodic

words that are not atranslational.

Lemma 43. Every word w̄ ∈ Ln
q is either in An

q or of the form ūp : 〈ūp〉g : . . . : 〈ūp〉gt−1

where:

• g is a translation where gd = p and there exists no translation r < g where 〈ūp〉r = ūp.

• ū ∈ L
(r/p,nd−1,...,n1)
q . t = nd

r and is the smallest value greater than 0 such that gt = I.

Proof. For the sake of contradiction let w̄ ∈ Ln
q be an aperiodic word that is neither

atranslational nor of the form ūp : 〈ūp〉g : . . . : 〈ūp〉gt−1 for ū ∈ L
(r/p,nd−1,...,n1)
q . As w̄ is

not atranslational, let g be the translation such that w̄ = 〈w̄〉g. Further let ū be the prefix

of w̄ corresponding to the first gd slices. If ū /∈ L
(r/p,nd−1,...,n1)
q then ū has some period
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which that is also the period of w̄. Otherwise note that 〈w̄〉 = w̄. Therefore as 〈w̄〉g = w̄,

〈w̄[gd+1,2gd]〉(g1,g2,...,gd−1) = ū. More generally, 〈w̄[(l−1)·gd+1,l·gd]〉(g1,g2,...,gd−1)l = ū. This

allows w̄ to be written as ū : 〈ū〉(g1,g2,...,gd−1) : . . . : 〈ū〉(g1,g2,...,gd−1)t−1 . Note that if t < nd
gd

then 〈w̄〉g = 〈ū〉(g1,g2,...,gd−1) : 〈ū〉(g1,g2,...,gd−1)2 : . . . : 〈ū〉(g1,g2,...,gd−1)t+1 , therefore 〈w̄〉g = w̄

if and only if ū = 〈ū〉(g1,g2,...,gd−1). If ū = 〈ū〉(g1,g2,...,gd−1), then w̄ = ū : 〈ū〉(g1,g2,...,gd−1) :

. . . : 〈ū〉(g1,g2,...,gd−1)t = ūt. Hence in this case w̄ would be periodic. Therefore for w̄

to be aperiodic and not a translational it must be of the form ū : 〈ū〉(g1,...,gd) : . . . :

〈ū〉(g1,...,gd)t−1 . In the other direction, if w̄ = ū : 〈ū〉(g1,g2,...,gd−1) : . . . : 〈ū〉(g1,g2,...,gd−1)

and ū ∈ A
(n1,n2,...,nd−1,r)
q then w̄ ∈ An

q . Similarly if ū /∈ A
(n1,n2,...,nd−1,r)
q it must be in

L
(n1,n2,...,nd−1,r)
q .

Following the characterisation of translational Lyndon words given by Lemma 43, the next

obvious question is how to count the number of atranslational words. To do so two further

results are needed to reduce the complexity of the counting problem. Lemmas 44 and 45

provide an outline for how to reduce the number of atranslational words that need to be

counted.

Lemma 44. Let ā, b̄ ∈ Ln
q . Given any integer r and translation g ∈ Z(n1,n2,...,nd−1) such

that gt = I, if ār : 〈ār〉g : . . . : 〈ār〉gt−1 ∈ L
n1,n2,...,nd−1,m
q then either b̄r : 〈b̄r〉g : . . . :

〈b̄r〉gt−1 ∈ L
n1,n2,...,nd−1,m
q or b̄ = c̄r

′
: 〈c̄r′〉g′ : . . . : 〈c̄r′〉g′t′−1 and g′i + gi mod ni ≡ 0 for all

i ∈ [d].

Proof. For the sake of contradiction assume that b̄r : 〈b̄r〉g : . . . : 〈b̄r〉gt−1 ∈ L
n1,n2,...,nd−1,m
q

while ār : 〈ār〉g : . . . : 〈ār〉gt−1 /∈ L
n1,n2,...,nd−1,m
q . As b̄r : 〈b̄r〉g : . . . : 〈b̄r〉gt−1 ∈

L
n1,n2,...,nd−1,m
q , g must be some operation such that gl 6= I for any l < t, as otherwise

either b̄r : 〈b̄r〉g : . . . : 〈b̄r〉gt−1 would be periodic, or there would exist some translation

smaller than b̄r : 〈b̄r〉g : . . . : 〈b̄r〉gt−1 . Note that ār : 〈ār〉g : . . . : 〈ār〉gt−1 must be periodic,

as otherwise it would belong to L
n1,n2,...,nd−1,m
q . As ā is in Ln

q , either ā is atranslational

or ā = c̄r
′

: 〈c̄r′〉g′ : . . . : 〈c̄r′〉g′t′−1 for some atranslational word c̄. If ā is atranslational,

then there is no translation g such that ār : 〈ār〉g : . . . : 〈ār〉gt−1 is periodic without

b̄r : 〈b̄r〉g : . . . : 〈b̄r〉gt−1 being periodic. On the other hand, if ā = c̄r
′

: 〈c̄r′〉g′ : . . . : 〈c̄r′〉g′
then (c̄r

′
: 〈c̄r′〉g′ : . . . : 〈c̄r′〉g′t′−1)r : (c̄r

′
: 〈c̄r′〉g′ : . . . : 〈c̄r′〉g′t′−1)r+g : . . . : (c̄r

′
: 〈c̄r′〉g′ : . . . :

〈c̄r′〉g′t′−1)r+gt−1 must be periodic. For any value of g′ where g′ + g 6= I, (c̄r
′

: 〈c̄r′〉g′ : . . . :

〈c̄r′〉g′t′−1)r : (c̄r
′

: 〈c̄r′〉g′ : . . . : 〈c̄r′〉g′t′−1)r+g : . . . : (c̄r
′

: 〈cr′〉g′ : . . . : 〈c̄r′〉g′t′−1)r+gt−1 must

be aperiodic.
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Lemma 45. Let n be a vector of dimensions. Given some value f which is a factor

of nd, and value c which is a factor of f , for any word ā ∈ L
n1,n2,...,nd−1,c
q such that

ār : 〈ār〉g : . . . : 〈ār〉gt−1 ∈ Ln
q there exists some word b̄ ∈ L

n1,n2,...,nd−1,f
q such that ār :

〈ār〉g : . . . : 〈ār〉gt−1 = b̄ : 〈b̄〉g′ : . . . : 〈b̄〉g′t′−1 where r · c ≤ f .

Proof. This claim is shown by considering two cases based on the value of r relative to f .

The first case is when r = f
c . In this case let g′ = g and b̄ = ār−1 : 〈ā〉g. Clearly the Lyndon

word ār : 〈ār〉g : . . . : 〈ār〉gt−1 is equivalent to b̄ : 〈b̄〉g : . . . : 〈b̄〉gt−1 . In the second case

r < f
c . If c·r is a factor of f , then either the word ār : 〈ār〉g : . . . : 〈ā〉gf/(r·c) ∈ A

n1,n2,...,nd−1,f
q

or ār : 〈ār〉g : . . . : 〈ār〉gt−1 is periodic, contradicting the initial assumption. If c · r is not a

factor of f , then let r′ = f
c mod r and t′ = b fcṙc. If ār : 〈ār〉g : 〈ār′〉gt′ is not atranslational

then ār : 〈ār〉g : . . . : 〈ār〉gt−1 must be periodic with a period in dimension d of at least f .

Hence ār : 〈ār〉g : 〈ār′〉gt′ ∈ A
n1,n2,...,nd−1,f
q .

In order to use these characterisations to relate the number of Lyndon words to the number

of atranslational words it is important to count the number of possible translations. The

main challenge is account for d-dimensional translational Lyndon words made of (d − 1)-

dimensional translation Lyndon words. To this end the set G(l,n) = {(x1, x2, . . . , xd−1) ∈
[n] : x

nd/l
i mod ni ≡ 0, and for some dimension i, there exists no value of j ∈ [ndl − 1] such

that xji mod ni ≡ 0} is introduced. This set counts the number of possible translations of

a d-dimensional atranslational word of dimensions (n1, n2, . . . , nd−1, l) that may be used

to build a d-dimensional Lyndon word of dimensions n. The following Lemma provides

an important step in the computation of the number of d − 1-dimensional atranslational

words that can be used to build a d-dimensional Lyndon word.

Lemma 46. Let G(l,n) = {(x1, x2, . . . , xd−1) ∈ [n] : x
nd/l
i mod ni ≡ 0, and for some

dimension i, there exists no value of j ∈ [ndl − 1] such that xji mod ni ≡ 0}. Given some

translation t ∈ G(l, (n1, n2, . . . , nd−1)), (t1, t2, . . . , td−2,
nd−1

l ) ∈ G(l,n) if and only if l = 1

and nd−1 = nd.

Proof. Observe that
(
ni
l

)
· ni+1 mod ni ≡ 0. Further note that ni

l must be the smallest

translation such that ta · nil mod na ≡ 0 for every a ∈ [i− 1] and hence ni
l must be a factor

of ni+1. Additionally, if ni+1 >
ni
l , then ni

l exists as some value smaller than ni+1 such

that ta · nil mod na ≡ 0. Hence the only possible value of ni+1 is ni
l and further for ni+1 to

be greater than or equal to ni, l must be equal to 1 and therefore ni+1 = ni. Therefore,
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given some translation t ∈ G(l, (n1, n2, . . . , nd−1)), (t1, t2, . . . , td−2,
nd−1

l ) ∈ G(l,n) if and

only if l = 1 and nd−1 = nd.

Lemma 46 provides the basis for generalising the set G(l,n) to count the number of ways

a d − i-dimensional atranslational word can be used to form a d-dimensional Lyndon

word. More explicitly, consider the i-dimensional atranslational word w̄. To use w̄ as

the translational base of some d-dimensional Lyndon word, note that there must be some

translation applied to w̄ at every dimension from i to d. Let ū = (w̄ : 〈w̄〉g : . . . : 〈w̄〉gt) :

〈(w̄ : 〈w̄〉g : . . . : 〈w̄〉gt)〉h : . . . : 〈(w̄ : 〈w̄〉g : . . . : 〈w̄〉gt)〉hs . For ū to be a Lyndon

word, h must not be (g1, g2, . . . , gi, nd/l) as (w̄ : 〈w̄〉g : . . . : 〈w̄〉gt) = 〈(w̄ : 〈w̄〉g : . . . :

〈w̄〉gt)〉(g1,g2,...,gi,nd/l).
Using this observation, the following two functions are needed to count the number

possible ways an i-dimensional atranslational word can be used to build a d-dimensional

word. Let I(i, l,n) return the number of dimensions j ∈ [i+ 1, d] where there exists some

translation g ∈ G(1, (n1, n2, . . . , nj)) such that (g1, g2, . . . , gi−1,
ni
l , 1, 1, . . . , 1) ∈ G(1,n).

The value of I(i, l,n) can be computed using Lemma 46 as:

I(i, l, (n1, n2, . . . , nd)) =


0 i = d or l > 1

1 + I(i, l, (n1, n2, . . . , nd−1)) ni = nd

I(i, l, (n1, n2, . . . , nd−1)) ni 6= nd

The function H(i, l,n, d) is used to return the number of possible sets of translations that

can be used to build a d-dimensional Lyndon word from w̄. Note that each such set requires

d − i translations if l = ni, or d − i + 1 translations if l < ni. If i = d then the value of

H(i, l,n, d) is either 1, if l = nd, or |G(l,n)| otherwise. If i < d, the number of possible

translations of dimensions d equals the size of G(1,n) minus the number of dimensions

where the translation in the lower dimension can be cancelled out by some translation in

a higher dimension. Note that if any translation in dimension i can be cancelled out by

some translation in dimensions j > i, then following Lemma 46 every translation can be.

Therefore the value of H(i, l,n, d) is given by the equation

H(i, l,n, d) =
{

(|G(1,n)| − (I(i, l,n))) · (H(i, l, (n1, n2, . . . , nd−1), d− 1))

Using the functions H(i, l,n, d) and I(i, l,n), the number atranslational words of dimen-
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sions n are counted in terms of atranslational words of smaller dimensions and Lyndon

words of dimensions n. Lemma 47 shows how to express the number of Lyndon words in

terms of atranslational words. Lemma 8 builds on this to show how to count the number

of atranslational words using Lemma 47.

Lemma 47. The number of d-dimensional Lyndon words is given in terms of atranslational

words as:

Ln
q = |An

q |+
∑
i∈[d]

∑
l|ni


0 l = ni(

d−1∏
t=i+1

−µ(nt)

)(
−µ
(
ni
l

))
|An1,n2,...,nd−1,l

q | ·H(i, l,n, d) 1 < l < nd

Proof. Note that every Lyndon word is either atranslational itself, or of the form ār :

〈ār〉g : . . . : 〈ār〉gt−1 for some ā ∈ Ln1,n2,...,nd−1,f . Following Lemma 45, every Lyndon word

of the form ār : 〈ār〉g : . . . : 〈ār〉gt−1 can be rewritten as b̄ : 〈b̄〉g : . . . : 〈v̄〉gt−1 for some

b̄ ∈ A
n1,n2,...,nd−1,l·r
q . Let ā be an atranslational word of dimensions (n1, n2, . . . , nd−1, l).

For Lyndon words with a d-dimensional translational period there are three cases to con-

sider. If l = nd, then ā ∈ An1,n2,...,nd
q . If nd

l is prime then for every cyclic shift of

X = (x1, x2, . . . , xd−1) where xi ∈ 1 . . . ni − 1 such that x
nd/l
i mod ni ≡ 0 and for some i

@j ∈ 1 . . . ndl − 1, the word ā : 〈ā〉X : . . . : 〈ār〉X(n2/l)−1 ∈ Ln
q . The number of words of the

form ā : 〈ā〉g : . . . : 〈ā〉g(nd/l)−1 ∈ Ln
q is |G(l,n)| · |An1,n2,...,nd−1,l

q |.
In the case that nd

l is not prime, following Lemma 45 there exists some d′ such that

b̄ = ā : 〈ā〉g : . . . : 〈ā〉gt′ where b̄ has dimensions (n1, n2, . . . , l
′). If there are at least two

distinct prime factors of nd
l , then note that ā : 〈ā〉g : . . . : 〈ā〉gt is counted for each prime

factor. Let p be the number of distinct prime factors. To avoid over counting, every word

of size (n1, n2, . . . , nd−1, l) needs to be subtracted p− 1 times. To this end, a new function

P (t) is introduced to act as a correction factor.

If p = 2 then by setting P (2) = −1 the over counting is avoided. If p = 3, then as these

words were counted three times for each prime factor, then subtracted three times n2
d·i for

each i in the set of prime factors, to avoid under counting these words P (3) must return 1.

One special case is when nd
l has a square prime factor, i2. In this case as nd

l·i has the same

number of distinct primes, P (ndl ) must return 0. Repeating this argument, P (s) is −1 if

s has an even number of prime factors, 1 if s has an odd number of prime factors, and 0

otherwise. Note that this corresponds to −1(µ
(
nd
l

)
) where µ

(
nd
l

)
is the möbius function.
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Further, as P (1) = 1, both the prime and non-prime cases can be combined into one case.

The same arguments may be applied to the lower dimensional case. Note that the

number of possible translations in this case is given by H(i, l,n, d). This gives the number

of Lyndon words with a translational period of dimensions (n1, n2, . . . , ni−1, l, 1, 1 . . . , 1) as

|A(n1,n2,...,ni−1,l,1,1...,1)
q | ·H(i, l,n, d), where l is a factor of ni. In order to account for over

counting, the number of possible Lyndon words is multiplied by

(
d−1∏
t=i+1

−µ(nt)

)(
−µ
(
ni
l

))
.

Therefore the total number of Lyndon words of dimensions n is equal to:

Ln
q = |An

q |+
∑
i∈[d]

∑
l|ni


0 l = ni(

d−1∏
t=i+1

−µ(nt)

)(
−µ
(
ni
l

))
|An1,n2,...,nd−1,l

q | ·H(i, l,n, d) 1 < l < nd

Corollary 8. The number of atranslational words is given by:

|An
q | = |Ln

q |−
∑
i∈[d]

∑
l|ni


0 l = ni(

d−1∏
t=i+1

−µ(nt)

)(
−µ
(
ni
l

))
|An1,n2,...,nd−1,l

q | ·H(i, l,n, d) 1 < l < nd

Proof. It follows from Lemma 47 that the number of translational words in

|Ln
q | =

∑
i∈[d]

∑
l|ni


0 l = ni(

d−1∏
t=i+1

−µ(nt)

)(
−µ
(
ni
l

))
|An1,n2,...,nd−1,l

q | ·H(i, l,n, d) 1 < l < nd

Hence the number of atranslational words is

|An
q | = |Ln

q |−
∑
i∈[d]

∑
l|ni


0 l = ni(

d−1∏
t=i+1

−µ(nt)

)(
−µ
(
ni
l

))
|An1,n2,...,nd−1,l

q | ·H(i, l,n, d) 1 < l < nd

From these equations, an upper and lower bound on the number of necklaces is derived.
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Lemma 48. The number of necklaces is bounded by qN

N ≤ |Nn
q | ≤ qN where n is the

dimension vector and q is the size of the alphabet.

Proof. The upper bound comes directly as the number of possible words. Using the above

equations, observe that for every word ni, 1 is a factor. As φ(1) = 1, this gives the number

of necklaces as at least qN

N .

8.1.1 Counting Fixed Content Multidimensional Necklaces

Following the above formulation, the natural question to ask is if there exists similar

formulae for the number of fixed content Necklaces, Lyndon words, and atranslational

words. Starting with Nn
p , using the arguments from Graham et. al. [42] the number of

necklaces can be computed by considering the possible periodic sub-words. It follows from

above that to split along the ith dimension with a period of ti, Pj mod ti ≡ 0 for each

letter j. For notation, let P
k =

(
P1
k ,

P2
k , . . . ,

Pq
k

)
. Further let (NP) denote the multinomial

( N
P1,P2,...,Pq

). For each subword with periods t1 to tD there are

(
N

lcm(t1,t2...tD)

P
lcm(t1,t2...tD)

)
possible fixed-

content words of dimensions (t1, t2, . . . , td). Therefore the total number of fixed content

necklaces is:

|Nn
P
| = 1

N

∑
t1| gcd(n1,P)

φ

(
n1

d1

)
. . .

∑
tD| gcd(nD,

P
d1...dD−1

)

φ

(
nD
dD

)(
N

lcm(t1,t2...tD)

P
lcm(t1,t2...tD)

)
(8.3)

Where gcd(n,P) is the greatest common denominator of both n and every value in the

vector P, i.e. gcd(n, P1, P2, . . . , Pq). The number of fixed content Lyndon words can be

counted though repeated application of the Móbius inversion formula using the previous

arguments as:

Ln
P

=
∑

d1| gcd(n1,P)

µ

(
n1

d1

)
. . .

∑
dD| gcd(nD,

P
d1d2...dD−1

)

µ

(
nD
dD

)
|N d1,d2...dD

P
| (8.4)

Finally the number of atranslational fixed content necklaces is derived using the same

arguments as in the unconstrained case. More specifically, the number of atranslational



150 Duncan Adamson

words of dimensions v is given by:

|An
p| = |Ln

p| −
∑

l| gcd(nd,P)


0 l = 1

−µ
(
nd
l

)
|An1,n2,...,nd−1,nd/l

P/l
| · |G(l,n)| 1 < l < nd

−µ
(
nd
l

)
|Ln1,n2,...,nd−1

P/l
| · |G(l,n)| l = nd

(8.5)

8.2 Ranking Multidimensional Necklaces

Recall that the rank of a necklace w̃ in the set |Nn
q | is the number of necklaces smaller than

w̃ under some ordering, in this case the ordering given in Definition 14. More broadly,

we can take any word v̄ and determine the number of necklaces that are represented by a

word smaller than v̄ using the same ordering. In this case, the smallest necklace greater

than or equal to v̄ is determined using the NextNecklace algorithm given in Theorem 28.

For the remainder of this section, we assume that we are finding the rank of some word

that is the canonical representation of a necklace. Before we provide a high level overview

of how this problem is tackled, we need to define a method of comparing two words of

different sizes. In this section, two words w̄ ∈ Σn and ū ∈ Σf are compared if and only

if ni mod fi ≡ 0 for every i ∈ [d]. As such, given such a pair of words ūn/f is used to

denote the word ū′ where ū′(i1,i2,...,id) = ū(i1 mod f1,i2 mod f2,...,id mod fd). Using this notation,

a comparison between word w̄ and ū is given as:

Definition 27. Let ū ∈ Σ(f1,f2,...,fd), and v̄ ∈ Σ(n1,n2,...,nd) where ni mod fi ≡ 0. ū < v̄ if

and only if ūn/f < v̄ following Definition 14. Similarly, ū > v̄ if and only if ūn/f > v̄.

At a high level, the ranking algorithm for a word w̄ works by first determining the number of

words of dimensions (f1, f2, . . . , fd) smaller than w̄, denoted T (w̄, f1, f2, . . . , fd), for every fi

that is factor of ni. This value is transformed, first from T (w̄, f1, f2, . . . , fd) to the number

of aperiodic words smaller than w̄, denoted L(w̄, f1, f2, . . . , fd), and finally to the number

of atranslational words smaller than w̄, A(w̄, f1, f2, . . . , fd). The set A(w̄, f1, f2, . . . , fd) is

then translated into the rank of w̄ within the set of atranslational necklaces A
(f1,f2,...,fd)
q ,

denoted RA(w̄, f1, f2, . . . , fd). This rank is than used to calculate the rank within the

set of Lyndon words RL(w̄, f1, f2, . . . , fd). Finally, this rank is translated to the necklace

rank RN(w̄, f1, f2, . . . , fd). Lemmas 49, and 50 show how to transform the size of the
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sets Tw̄,f1,f2,...,fd into the size of A(w̄, n1, n2, . . . , nd). Lemmas 51, 52 and 53 show how to

transform the size of the sets A(w̄, f1, f2, . . . , fd) into the value RN(w̄, n1, n2, . . . , nd).

In order to compute the size of T (w̄, f1, f2, . . . , fd), we partition the set into the

subsets B(w̄, g, j, f1, f2, . . . , fd). Here B(w̄, g, j, f1, f2, . . . , fd) contains the set of words

v̄ ∈ T (w̄, f1, f2, . . . , fd) where: (1) g is the smallest translation such that 〈v̄〉g < w̄ and (2)

j is the length of the longest shared prefix between 〈v̄n/f 〉g and w̄′, i.e. the largest value

such that
(
〈v̄n/f 〉g

)
[1,j]

= w̄[1,j]. The size of each set B(w̄, g, j, f1, f2, . . . , fd) is computed

by considering the structure of the words in B(w̄, g, j, f1, f2, . . . , fd). This requires the size

of two further sets to be computed, the number of non-cyclic words where every suffix is

greater than w̄, and the number of words of dimensions (f1, f2, . . . , fd−1) that are smaller

than w̄j+1. The first of these sets is the more technical, requiring a new recursive technique

to be built which is provided in Subsection 8.2.1.

The remainder of this section is structured as follows. Lemmas 49 to 53 cover the

theoretical tools needed to rank necklaces. Following this, an overview of the method to

compute the size of T (w̄, f1, f2, . . . , fd) is provided. Finally, Subsection 8.2.1 covers the

main sub method used in the ranking process. Finally Theorem 26 is restated and formally

proven.

Lemma 49. The size of L(w̄, n1, n2, . . . , nd) can be computed in terms of T (w̄, f1, f2, . . . , fd)

using the equation:

L(w̄) =
∑
f1|n1

µ

(
n1

f1

) ∑
f2|n2

µ

(
n2

f2

)
. . .
∑
fd|nd

µ

(
nd
fd

)
T (w̄, f1, f2, . . . , fd)

Proof. Observe that every word in T (w̄, n1, n2, . . . , nd) is either aperiodic, in which case

it is in L(w̄, n1, n2, . . . , nd), or periodic, in which case it is in L(w̄, f1, f2, . . . , fd) where

fi is a factor of ni. Following the same arguments as given in Section 8.3, the size of

T (w̄, n1, n2, . . . , nd) is equal to
∑
f1|n1

∑
f2|n2

. . .
∑
fd|nd

|L(w̄, f1, f2, . . . , fd)|. By repeated appli-

cation of the Möbius inversion formula, the size of L(w̄, n1, n2, . . . , nd) can be computed

as:

L(w̄, n1, n2, . . . , nd) =
∑
f1|n1

µ

(
n1

f1

) ∑
f2|n2

µ

(
n2

f2

)
. . .
∑
fd|nd

µ

(
nd
fd

)
T (w̄, f1, f2, . . . , fd)
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Lemma 50. The size of A (w̄, n1, n2, . . . , nd) equals

|L(w̄, n1, n2, . . . , nd)|−
∑
i∈[d]

∑
l|ni


0 l = ni(

d−1∏
t=i+1

−µ(nt)

)(
−µ
(
ni
l

))
|An1,n2,...,nd−1,l

q | ·H(i, l,n, d) 1 < l < nd

Proof. Following the arguments given in Lemma 47, observe that any Lyndon word in

L(w̄, n1, n2, . . . , nd) is either be atranslational, or of the form ā : 〈ā〉g : . . . : 〈ā〉gt−1 . In

the latter case, let l = |ā|d. Note that ā must be either in A(w̄[1,l], n1, n2, . . . , nd−1, l), if

l > 1 or L(w̄1) if l = 1. Repeating the same arguments as in Lemma 47 allows the size of

A (w̄, n1, n2, . . . , nd) to be written as:

|L(w̄, n1, n2, . . . , nd)|−
∑
i∈[d]

∑
l|ni


0 l = ni(

d−1∏
t=i+1

−µ(nt)

)(
−µ
(
ni
l

))
|An1,n2,...,nd−1,l

q | ·H(i, l,n, d) 1 < l < nd

Lemma 51. The rank RA(w̄, n1, n2, . . . , nd) = 1
N |A (w̄, n1, n2, . . . , nd) |.

Proof. Observe that any atranslational necklace of dimensions n has exactly N representa-

tions. Therefore the number of atranslational necklaces smaller than w̄ is 1
NA (w̄). Hence

RA(w̄, n1, n2, . . . , nd) =
1

N
A (w̄, n1, n2, . . . , nd) .

In order to use the rank RA(w̄, n1, n2, . . . , nd) to determine the rank RL(w̄, n1, n2, . . . , nd),

it is necessary to consider the special case where w̄ is a translational, aperiodic word.

Let ū be the translational period of w̄ with dimensions (g1, g2, . . . , gd−1,
ni
l , 1, 1, . . . , 1)

for g ∈ G(l, n1, n2, . . . , ni) and i ∈ [d]. Further, let ū[j] be the Lyndon word of di-

mensions (g1, g2, . . . , gi−1,
ni
l , ni+1, . . . , nj) such that ū[j]i = w̄i for j ∈ [i + 1, d]. Note

that ū[j] can be written as ū[j] : ū[j − 1] : 〈ū[j − 1]〉rj : . . . : 〈ū[j − 1]〉
r
nj−1

j

, for some

rj ∈ G(lj , (n1, n2, . . . , nj)) where lj = 1 if j > i and 1 otherwise. Observe that the

number of Lyndon words with a translational period of ū with dimensions n that are

smaller than w̄ is equal to the sum of the number of translations in G(lj , n1, n2, . . . , nj)
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multiplied by H(i, li,n). Let S(g, l, (n1, n2, . . . , nj)) return the number of translations in

G(l, (n1, n2, . . . , nj)) smaller than g. To this end let U(w̄) return either:

• 0 if w̄ is either atranslational or periodic.

•
d∑
j=i

S(rj , l, (n1, n2, . . . , nj)) j = i

S(rj , 1, (n1, n2, . . . , nj)) otherwise.
if w̄ is a Lyndon word with a translational

period of g.

Using U(w̄), the number of Lyndon words can be computed from RA(w̄, n1, n2, . . . , nd) as

follows.

Lemma 52. The rank

RL(w̄, n1, n2, . . . , nd) = RA(w̄, n1, n2, . . . , nd) + U(w̄)+

∑
i∈[d]

∑
l|ni


0 l = ni(

d−1∏
t=i+1

−µ(nt)

)(
−µ
(
ni
l

))
|RA(w̄[1,l], n1, n2, . . . , ni−1)| ·H(i, l,n, d) 1 < l < nd

Proof. Note that every necklace smaller than w̄ is either atranslational, in which case

it is counted by RA(w̄, n1, n2, . . . , nd), or is translational. In the latter case following

Lemma 47 for each necklace counted by RA(w̄[1,l], n1, n2, . . . , nd−1, l), there are H(i, l,n)

translational necklace counted by RL(w̄, n1, n2, . . . , nd). Further, if w̄ is a translational

Lyndon word of the form v̄ : 〈v̄〉g : . . . : 〈v̄〉g, then there are there are U(w̄) Lyndon words

of the form v̄ : 〈v̄〉g : . . . : 〈v̄〉g where v̄i = w̄i for every i ∈ [|v̄|]. Following Lemma 47

RL(w̄, n1, n2, . . . , nd) is counted in terms of RA(w̄, n1, n2, . . . , nd−1, l) as:

RL(w̄, n1, n2, . . . , nd) = RA(w̄, n1, n2, . . . , nd) + U(w̄)+

∑
i∈[d]

∑
l|ni


0 l = ni(

d−1∏
t=i+1

−µ(nt)

)(
−µ
(
ni
l

))
|RA(w̄[1,l], n1, n2, . . . , ni−1)| ·H(i, l,n, d) 1 < l < nd
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Lemma 53. The rank RN(w̄, n1, n2, . . . , nd) =
∑
f1|n1

∑
f2|n2

. . .
∑
fd|nd

RL(w̄, f1, f2, . . . , fd).

Proof. Observe that every necklace counted by RN(w̄, n1, n2, . . . , nd) has a period of m

where mi is a factor of |w̄|i for every i ∈ 1 . . . d. As RL(w̄, f1, f2, . . . , fd) counts the rank

among aperiodic necklaces of dimensions (f1, f2, . . . , fd), the rank among necklaces is given

by:

RN(w̄, n1, n2, . . . , nd) =
∑
f1|n1

∑
f2|n2

. . .
∑
fd|nd

RL(w̄, f1, f2, . . . , fd)

This leaves the challenge of computing the size of T ( w̄, f1, f2, . . . , fd). To this end,

T (w̄, f1, f2, . . . , fd) is partitioned into the sets B(w̄, gd, j, f) such that B(w̄, gd, j, f) contains

every word v̄ ∈ T (w̄, f) where:

• gd is the smallest translation in dimension d of v̄ such that 〈v̄〉(θ1,θ2,...,θd−1,gd) < w̄ for

some translation θ ∈ Z(f1,f2,...,fd−1).

• j is the largest value such that (〈v̄′〉(θ1,θ2,...,θd−1,gd))[1,j] = w̄′[1,j].

To compute the size of B(w̄, gd, j, f), there are two cases to consider based on the values

of gd and j.

Case 1: gd + j ≤ fd. In this case every word v̄ ∈ B(w̄, gd, j, f) can be written as

ā : 〈w̄[1,j] : b̄〉θ : c̄ where:

• ā is a (f1, f2, . . . , fd−1, gd) dimensional word for which there exists no translation

r ∈ Z(f1,f2,...,gd) such that (〈ā〉r)[1,gd−rd] < w̄[1,gd−rd].

• b̄ is some word of dimensions (f1, f2, . . . , fd−1) that is smaller than w̄j+1.

• θ is some translation in Z(f1,f2,...,fd−1).

• c̄ is an unrestricted word of dimensions (f1, f2, . . . , fd−1, fd − (gd + j + 1)).

To count the number of words of this form, it is necessary to compute the number of

non-cyclic words of dimensions (f1, f2, . . . , fd−1, i) where every suffix of length i is greater

than w̄[1,i]. To this end a new set β(w̄, i, j, f1, f2, . . . , fd−1) is introduced containing every

word ū where:
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• The dimensions of ū are (f1, f2, . . . , fd−1, i).

• There exists no translation g ∈ Z((f1, f2, . . . , fd−1)) where 〈ū[i−l,i]〉g ≤ w̄[1,l].

• The first j slices of ū are equal to the first j slices of w̄, i.e. ū[1,j] = w̄[1,j].

When it is clear from context β(w̄, i, j, f1, f2, . . . , fd−1) is denoted β(w̄, i, j, f). A method to

compute the size of β(w̄, i, j, f) is given in Subsection 8.2.1. Using |β(w̄, i, j, f)| as a black

box, the number of possible values of ā is |β(w̄, i, j, f)|. Similarly, the number of possible

values of b̄ is given by qf1·f2·...·fd−1 − |β(w̄j+1, 1, 0, f)| − 1. The number of possible values

of θ is equal to the size of the set Θ = {r ∈ Zf : @s ∈ Zf where s < r and 〈w̄〉r = 〈w̄〉s}.
Finally, the number of values of c̄ is given by qf1·f2·...·fd−1·(fd−(gd+j+1)). Therefore the size

of B(w̄, g, j, f f) when gd + j < nd is given by:

|β(w̄, gd, 0, f)| · (qf1·f2·...·fd−1 − |β(w̄j+1, 1, 0, f)| − 1) · |Θ| · qf1·f2·...·fd−1·(fd−(gd+j+1))

Case 2: gd + j > fd. In this case every word v̄ ∈ B(w̄, gd, j, f) can be written as

〈w̄[j+gd−fd,j] : b̄〉θ : ā : 〈w̄[1,j+gd−fd]〉θ where:

• ā is a (f1, f2, . . . , fd−1, fd− (j+ 1)) dimensional word for which there exists no trans-

lation r ∈ Z(f1,f2,...,fd−1,gd) such that 〈ā〉r < w̄[1,gd].

• b̄ is some word of dimensions (f1, f2, . . . , fd−1) that is smaller than w̄j+1.

• θ is a translation in the set Θ = {r ∈ Z(f1,f2,...fd−1) : @s ∈ Z(f1,f2,...fd−1) where s < r

and 〈w̄[1,j]〉r = 〈w̄[1,j]〉s}.

The number of possible values of θ is equal to the size of the set Θ as in Case 1. The

number of possible values of b̄ in this case is somewhat more complicated than in Case 1.

Let t be the length of the longest suffix of w̄[j+gd−fd,j] such that w̄[j−t,j] = w̄[1,t]. To avoid

〈v̄〉ψ, for some ψ ∈ Z(f1,f2,...,fd−1,fd−gd), being smaller than w̄, b̄ must be greater than or

equal to w̄t+1. Note that the number of words greater than w̄t+1 is given by β(w̄t+1, 1, 0, f).

Therefore the number of possible values of b̄ as (qf1·f2·...·fd−1·(fd−(gd+j+1)) − β(w̄j+1, 1, 0)−
1)− (qn1·n2·...·fd−1·(fd−(gd+j+1)) − β(w̄t+1, 1, 0, f)) = β(w̄t+1, 1, 0, f)− β(w̄j+1, 1, 0, f) + 1. If

b̄ = w̄t+1, the number of possible values of ā is given by |β(w̄, fd+ t−j, t+1, f)|. Otherwise
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the number of possible values of ā is given by |β(w̄, fd − j − 1, 0, f)|. Therefore the total

number of words of the form 〈w̄[j+gd−fd,j] : b̄〉θ : ā : 〈w̄[1,j+gd−fd]〉θ is:

|β(w̄, fd + t− j, t+ 1, f)|+
(
|β(w̄t+1, 1, 0, f)| − |β(w̄j+1, 1, 0, f)|

)
· |β(w̄, fd− j− 1, 0, f)| · |Θ|

8.2.1 Computing the Number of Prefixes Greater than w̄

The size of T (w̄) require the size of the set β(w̄, i, j, f) to be computed. Let v̄ ∈ β(w̄, i, j, f).

Observe that if vj+1 > w̄j+1, then for any translation g ∈ Z((f1, f2, . . . , fd−1, j + 1)),

v̄[1,j+1] > w̄[1,j+1]. Therefore the number of possible values of v̄[j+2,i] = |β(w̄, i−j−1, 0, f)|.
Similarly the number of values of v̄ where v̄j+1 = w̄j+1 is |β(w̄, i, j+ 1, f)|. This allows the

size of β(w̄, i, j, f) to be computed in a recursive manner. In the special case where j = i,

there is either one word in β(w̄, i, j, f), if j = 0, or none if j > 0. Let NS(w̄, j, f) return the

number of possible slices of dimensions (f1, f2, . . . , fd−1 that are greater than w̄j+1. Using

NS(w̄, j, f) as a black box, the size of β(w̄, i, j, f) can be computed as:

|β(w̄, i, j, f)| =


0 i = j, j > 0

1 i = j = 0

NS(w̄, j, f) · |β(w̄, i− j − 1, 0, f)|+ |β(w̄, i, j + 1, f)| Otherwise.

This leaves the problem of computing NS(w̄, j, f). This is done by considering two cases.

First are the set of slices that belong to a necklace class greater than w̄j+1. The number

of such necklaces can be computed as |N (f1,f2,...,fd−1)
q | − RN(w̄j , f1, f2 . . . , fd−1), i.e. the

number of necklaces of dimensions (f1, f2, . . . , fd−1) minus the necklaces smaller than w̄j .

To account for the number of possible translations of each necklace, it is easiest to use the

sets of aperiodic words instead. The number of such words are determined by counting the

number of atranslational words of dimensions (f1, f2, . . . , fi−1, hi, 1, . . . , 1) for every i ∈ [d]

and factor hi of fi. This rank is then multiplied by the number of possible translations,

given by f1 · f2 · . . . · fi−1 · hi, and H(i, h, (f1, f2, . . . , fd), d) to account for the number of

necklaces with a translational period in T (w̄, f1, f2 . . . , fd). The second case to consider

are translations of w̄j1 greater than TR(w̄j+1). This is given by TP (w̄j+1) − TR(w̄j+1).

This allows the number of necklaces greater than w̄j along with the number of translations
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of these necklaces to be counted as:

NS(w̄, j, f) = (TP (w̄j+1)− TR(w̄j+1)) +
∑

i∈[d−1]

∑
hi|fi

RA(w̄j ,h[i])) · |h[i]| ·H(i, h, (f1, f2, . . . , fd), d)

Where h[i] = (f1, . . . , fi−1, hi, . . . , 1) and |h[i]| = f1 · f2 · . . . · fi−1 · hi.

Theorem 26. The rank of a d-dimensional necklace with dimensions n can be computed

with a complexity of O(N5) for both time and space.

Proof. Lemmas 49, 50, 51, 52, and 53 show that to rank RN(w̄), the first step is to

compute the size of T (w̄, f1, f2 . . . , fd). Following Lemma 50, to compute the size of

A(w̄), f1, f2 . . . , fd, the set A(w̄[1,l], f1, f2 . . . , fd−1, l) must be computed for every factor

l of fd, alongside the set L(w̄, f1, f2 . . . , fd) and L(w̄1, f1, f2 . . . , fd−1). Note that this re-

quires at most log2(nd) sets to be computed. The size of the set L(w̄, f1, f2 . . . , fd−1) can

be computed by computing the size of T (w̄, h1, h2, . . . , hd) where hi is a factor of fi. There-

fore for L(w̄, f1, f2 . . . , fd−1), the size of at most log2(N) sets T (ū, h1, h2 . . . , hd) must be

computed.

Following the above observations, T (w̄, n1, n2 . . . , nd) can be computed by determin-

ing the size of B(w̄, g, j, n1, n2 . . . , nd−1) using n2
d combinations of j and g. For each

pair j and g, the size of β(w̄, i, j, n1, n2 . . . , nd−1) must be computed for some value of

i. This is done in a dynamic programming approach. Starting with i = j, the size

of |β(w̄, i, j, n1, n2 . . . , nd)| is computed using the previously computed values as a basis.

As such, the size of |β(w̄, i, j, n1, n2 . . . , nd)| for every pair i and j can be computed in

n2
d time multiplied by the complexity of computing NS(w̄, j, n1, n2 . . . , nd). To compute

NS(w̄, j, n1, n2 . . . , nd), d · log2N
d = log2

N
nd

words of dimensions d− 1 must be ranked.

As there are n2
d values of β(w̄, i, j, n1, n2 . . . , nd), and log2( Nnd ) words of dimensions

d − 1 must be ranked for each of the n2
d values of β(w̄, i, j, n1, n2 . . . , nd), to precom-

pute every value of β(w̄, i, j, n1, n2 . . . , nd) n
2
d · log2( Nnd ) time is needed, multiplied by the

cost of ranking a d − 1 word. If d = 2, then the rank at this step can be computed in

O(n2
1) time using existing algorithms due to Sawada and Williams [92]. Hence the size of

β(w̄, i, j, n1, n2 . . . , nd) for every value of i and j can be computed in the two dimensional

case in O(nd ·N · log2( Nnd ) · n2
1) = O(N2 · log2( Nnd )) time. To get the rank of a two dimen-

sional word, a further n2
2 time is needed to compute the size of T (w̄, n1, n2 . . . , nd), with

log2(N) sets of T (w̄) to be computed. Therefore the rank of a two dimensional word can
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be computed in O(n2
2 · log2(N)N2 · log2( Nnd )).

Similarly in the three dimensional case, the set of all values of β(w̄, i, j, n1, n2 . . . , nd)

can be computed in O(n2
3·n2

2·log2(N)N
2

n2
3
·log2(n1)) = O(N2·n2

2·log2(N)·log2(n1)). Thus the

complexity of ranking a three dimensional word is O(n2
3 ·log2(N)·N2 ·n2

2 ·log2(N)·log2(n1))

time. In the more general case, a total of n2
d · log2(N) words of dimension d − 1 must be

ranked. Using the two and three dimensional cases as a base, the total complexity of

ranking a d dimensional word is O(
(∏d

i=2 n
4
i · log2(ni)

)
n2

1) ≤ O(N5) .

8.2.2 Ranking Fixed Content Necklaces

The same tools used in the unrestricted case are used in the fixed content case. As before,

the goal is to count the number of words of dimensions f that belong to a necklace class

smaller than the ranked word w̄, with the additional constraint that F = f1 · f2 · . . . · fd is

a factor of Pi for every Pi ∈ P. The main complexity is generalising the previous approach

comes from the constraint on the content. Let T(w̄, i, j, f , t,Q) be the set of words of

dimensions f with fixed content Q belonging to a necklace class smaller than w̄. As in the

unconstrained case, this set is subdivided based on two values gd and j. Formally, the set

B(w̄, f ,q) ⊆ T(w̄, i, j, f , t,Q) contain every word v̄ ∈ T(w̄, f ,Q) where:

• h = (h1, h2, . . . , hd−1, gd) is the smallest translation such that 〈v̄〉h < w̄.

• j is the largest value such that (〈w̄〉h)[1,j] = w̄[1,j].

• P(w̄[1,j]) + q = Q.

In order to compute the size of B(w̄, f ,q), a generalisation of β(w̄, i, j, f) is needed. More

precisely, due to the constraint on the content, it is necessary not only to count the number

of words for which every suffix is greater than w̄, as in β(w̄, i, j, f), but instead to count

the number of such suffixes of the words in B(w̄, f ,q) for each prefix of w̄. To this end, let

γ(w̄, i, j, f ,q, t, l) return the number of triples (x̄, ȳ, z̄) where:

• x̄ is a word of dimensions (f1, f2, . . . , fd−1, i) such that every suffix of x̄ belongs to a

necklace class larger than the prefix of w̄ of the same length and x̄[1,j] = w̄[1,j].

• ȳ is a word of dimension (f1, f2, . . . , fd−1) such that ȳ < w̄t.

• z̄ has dimensions (f1, f2, . . . , fd−1, l).
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• P(x̄ : ȳ : z̄) = q.

As with β(w̄, i, j, f), the problem of computing γ(w̄, i, j, f ,q, t, l) is solved recursively. In

effect, the problem is solved in three stages. First, the number of possible values of x̄ are

computed. Secondly, for each value of x̄, the number of possible values of ȳ are computed.

Finally, the number of possible values of z̄ are computed using the remaining symbols.

To compute the number of values of x̄, observe that x̄[j+1,i] is counted by either γ(w̄, i−
j − 1, 0, f ,q − P (x̄j+1), t, l), if x̄j+1 > w̄j+1, or by γ(w̄, i, j + 1, f ,q − P (w̄j+1), t, l) if

x̄j+1 = w̄j+1. In order to count the number of possible values of x̄1 that are greater than

w̄j+1, the same approach as in the unrestricted setting is used. Let V (q, f) contain every

Parikh vector q′ where q′i ≤ qi and
q∑
i=1

q′i = f1 · f2 · . . . · fd−1. Further let X(w̄j+1, f ,q)

return the number of values of x̄j+1 with a Parikh vector q that are greater than w̄j+1.

X(w̄j+1, f ,q) is computed in a similar manner to NS(s̄, j, f̄). Formally:

X(w̄j+1, f ,q) =

(TP (w̄j+1)−RP (w̄j+1))+∑
i∈[d−1]

∑
hi|fi

RA(w̄j+1,h[i],q) · (hi · fi−1 · fi−2 · . . . · f1)



Therefore the number of possible values of x̄j+1 of dimensions f is given by∑
q′∈V (q,f)

X(w̄j+1, f ,q
′).

Similarly the number of possible values of ȳ is the number of words either belonging to a

necklace class smaller than 〈w̄j+1〉, or belonging to the same necklace class as 〈w̄j+1〉, while

having a smaller rotation. Note that the number of such words for a given Parikh vector

q is given by (Fq)−X(w̄j+1, f ,q)− 1. Finally, the number of possible words of dimensions

(f1, f2, . . . , fd−1, l) with the Parikh vector q is given by (Fq). Using these observations

γ(w̄, i, j, f ,q, t, l) can be computed as:
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γ(w̄, i, j, f ,q, t, l) =



γ(w̄, i, j + 1, f ,q− P(w̄j+1), t, l)+∑
q′∈V (q,f)

X(w̄j+1, f ,q
′) · γ(w̄, i− j − 1, 0, f ,q− q′, t, l)

 i > j

∑
q′∈V (q,f)

(
(Fq′)−X(w̄t+1, f ,q

′)
)
· ( F ·l

q−q′) i = j = 0

0 i = j, i > 0

Using γ(w̄, i, j, f ,q, l), the size of B(w̄, gd, j, f ,q) can be computed in the same manner as

the size of B(w̄, gd, j, f). More precisely, two cases are considered based on the value of gd

and j.

Case 1: gd + j ≤ fd. In this case every word v̄ ∈ B(w̄, gd, j, f ,q) can be written as

ā : 〈w̄[1,j] : b̄〉θ : c̄ where:

• ā is a (f1, f2, . . . , fd−1, gd) dimensional word for which there exists no translation

r ∈ Z(f1,f2,...,gd) such that (〈ā〉r)[1,gd−rd] < w̄[1,gd−rd].

• b̄ is some word of dimensions (f1, f2, . . . , fd−1) that is smaller than w̄j+1.

• θ is some translation in Z(f1,f2,...,fd−1).

• c̄ is an unrestricted word of dimensions (f1, f2, . . . , fd−1, fd − (gd + j + 1)).

Note that γ(w̄, gd, 0, (f1, f2, . . . , fd−1),q, j, n − gd − j − 1) counts the number of possible

values of ā, b̄ and c̄. The number of possible values of θ is equal to the size of the set

Θ = {r ∈ Zf : @s ∈ Zf where s < r and 〈w̄〉r = 〈w̄〉s}. Therefore the size of B(w̄, gd, j, f ,q)

when gd + j < fd is given by:

γ(w̄, gd, 0, (f1, f2, . . . , fd−1),q, j, n− gd − j − 1) · |Θ|

Case 2: gd + j > fd . In this case every word v̄ ∈ B(w̄, gd, j, f ,q) can be written as

〈w̄[j+gd−fd,j] : b̄〉θ : ā : 〈w̄[1,j+gd−fd]〉θ where:

• ā is a (f1, f2, . . . , fd−1, fd− (j+ 1)) dimensional word for which there exists no trans-

lation r ∈ Z(f1,f2,...,fd−1,gd) such that 〈ā〉r < w̄[1,gd].
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• b̄ is some word of dimensions (n1, n2, . . . , nd−1) that is smaller than w̄j+1.

• θ is a translation in the set Θ = {r ∈ Z(f1,f2,...fd−1) : @s ∈ Z(f1,f2,...fd−1) where s < r

and 〈w̄[1,j]〉r = 〈w̄[1,j]〉s}.

The number of possible values of θ is equal to the size of the set Θ as in Case 1. The

number of possible values of b̄ in this case is somewhat more complicated than in Case 1.

Let t be the length of the longest suffix of w̄[j+gd−nd,j] such that w̄[j−t,j] = w̄[1,t]. To avoid

〈v̄〉ψ, for some ψ ∈ Z(f1,f2,...,fd−1,nd−gd), being smaller than w̄, b̄ must be greater than or

equal to w̄t+1. Let γ′(w̄, i, j, f ,q) return only the number of words with Parikh vector q

that are greater than w̄ for any rotation of the suffix, defined as:

γ′(w̄, i, j, f ,q) =



γ
′(w̄, i, j + 1, f ,q− P(w̄j+1))+∑

q′∈V (q,h[i])

X(w̄j+1, f ,q
′) · γ′(w̄, i− j − 1, 0, f ,q− q′)

 i > j

1 i = j = 0

0 otherwise.

Using γ′(w̄, i, j, f ,q), the number of words greater than w̄t+1 is given by∑
q′∈V (q,f)

γ′(w̄t+1, 1, 0, f ,q
′).

This gives the number of possible values of ā and b̄ where ā > w̄t+1 as∑
q′∈V (q,f)

(
γ′(w̄t+1, 1, 0, f ,q

′)− γ′(w̄j+1, 1, 0, f ,q
′)
)
· γ′(w̄, i, fd − (j + 1), f ,q− q′).

Accounting for the case where ā = w̄t+1, the size of B(w̄, gd, j, f ,q) when gd + j > fd is

given by:

|Θ| ·

γ
′(w̄, fd − j, t+ 1, f ,q− P(w̄t+1))+∑

q′∈V (q,f)

(
γ′(w̄t+1, 1, 0, f ,q

′)− γ′(w̄j+1, 1, 0, f ,q
′)
)
· γ′(w̄, i, fd − (j + 1), f ,q− q′)


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Theorem 27. The rank of a word among the set of multidimensional necklaces of dimen-

sions n = (n1, n2, . . . , nd) over the alphabet Σ with the Parikh vector q can be computed in

O(N6+q) time, where q = |Σ| and N = n1 · n2 · . . . · nd).

Proof. Following the same arguments from Theorem 26, the complexity cost of this problem

comes from computing γ(w̄, i, j, f ,q, t, l). In order to compute γ(w̄, i, j, f ,q, t, l), a dynamic

programming approach is used. Observe that γ(w̄, i, j, f ,q, t, l) can be computed in |V (q)|
steps if X(w̄j+1, f ,q

′) and γ(w̄, i− j−1, 0, f ,q−q′, t, l) have been computed for every q′ ∈
V (q). Further, γ(w̄, i, j, f ,q, t, l) can be computed in O(1) time when i = j if X(w̄j , f ,q

′)

has been precomputed for every value of w̄j , f and q′.

In order to compute X(w̄j , f ,q
′), it is necessary to compute the rank of w̄j among the

set of d − 1 atranslational words, in turn requiring γ(w̄, i, j, f
′
,q, t, l) to be computed for

every f
′ ∈ {(m1,m2, . . . ,md−2) : ni mod mi ≡ 0}. By repeating the same arguments from

Theorem 26, the problem of ranking fixed content necklaces can be done in an additional

factor of O(N q+1), accounting for the number of possible Parikh vectors q, and possible

values of l. Therefore, the total complexity is O(N6+q).

8.3 Generating and Unranking Multidimensional Necklaces

To complete the generalisation of results on one dimensional necklace to the multidimen-

sional setting, there are two major problems left. These are the problems of generating the

set of necklaces in order efficiently and of unranking a necklace. The unranking problem

asks, given an alphabet Σ of size q, and dimension vector n, what is the ith necklace in Nn
q .

In many ways the relationship between generation and unranking can be seen as analogous

to the problems of counting the number of necklaces and ranking a given necklace. In both

cases one problem relates to the complete set, while the other focuses on a single necklace.

8.3.1 Generating Necklaces

Starting with the problem of generation, the idea presented here is based on generation

of lower dimensional necklaces, generalising the 1D techniques to the higher dimensional

setting. For the 1D setting, there have been several approaches for the generation of

necklaces in constant amortised time, notably those of Cattell et. al. [17] and of Fredricksen

and Maiorana [31]. A tempting approach would be to make an alphabet of size equal to

the number of necklaces with dimensions (n1, . . . , nd−1) and to generate the 1D necklaces
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[
A A
A A

]
→
[
A A
A B

]
→
[
A A
B B

]
→
[
A B
A B

]
→
[
A B
B A

]
→
[
A B
B B

]
→
[
B B
B B

]
[
1
1

]
→
[
1
2

]
→
[
1
3

]
→
[
2
2

]
→
[

2
translated(2)

]
→
[
2
3

]
→
[
3
3

]

Figure 8.1: An example of generation of (2, 2) necklaces, over the alphabet (A,B). The
following mapping from necklace to code has been used: AA→ 1, AB → 2, BB → 3.

from that. While this approach would generate a set of necklaces, as each d-dimensional

necklace is comprised of a set of d − 1-dimensional necklaces, it would also miss any in

which one or more slices are translated by any degree. Similarly, representing every slice

under each translation would generate words that are not necklaces. Let us illustrate it

for a set of necklaces over a binary alphabet with dimensions (2, 2). The complete set

of necklaces is given in Figure 8.1. Of particular interest is the necklace represented by[
A B

B A

]
. While the first row, AB, is the canonical form of a 1D necklace, BA is not as it

is equal to AB after a cyclic shift. Despite AB occurring as the necklace representation

multiple times prior to this, BA only occurs at this point. As such, the situations where

some slice may or may not be translated need to be understood and taken into account in

order to generate the set of necklaces.

Before generating the set of necklace, the idea of a multidimensional prenecklace must

be established. A prenecklace is a word w̄ of dimensions (n1, n2, . . . , nd) such that there

exists some necklace of dimensions (n1, n2, . . . , nd−1, nd+m) represented by a word ū such

that ū[1,nd] = w̄. Note that every necklace is a prenecklace.

Lemma 54. Given w̃, ũ ∈ |Nn
q | such that rank(ũ) = rank(w̃) + 1, let Pre(w̄, ū) = {v̄ ∈

Σn : ū > v̄ > w̄, v̄ is a prenecklace}. The size of Pre(w̄, ū) is at most nd.

Proof. This is statement is proven constructively. Let NextPrenecklace(ū) return the

smallest prenecklace greater than ū. Given some word ū, let p be the length of the longest

prefix of ū that is a necklace. If p < nd, the word ū′ is defined ū′i = ūi mod p. If ū′ 6= ū,

then ū′ is the smallest prenecklace that is greater than ū. Otherwise, let i be the last

slice of ū such that ūi 6= Q̄. Note that ū[1,i−1]Q̄
nd−i is a necklace. The auxiliary function

NextSlice(v̄) is introduced as returning the subsequent word in the ordering defined in

Section 2.
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NextSlice(v̄) =

translate(v̄) TR(v̄) < TP (v̄)

NextNecklace(〈v̄〉) otherwise.

Here NextNecklace is treated as a black box that returns the next necklace in the ordering.

Note that ū[1,i−1] : NextSlice(ūi))j mod i must be a necklace as any suffix of ū[1,i−1] :

NextSlice(ūi))j mod i must be greater than ū[1,i−1]. The word ū′ is redefined as ū′j =

(ū[1,i−1] : NextSlice(ūi))j mod i. As ū[1,i−1] : NextSlice(ūi))j mod i is a necklace, ū′ is a

prenecklace. Therefore ū′ is returned. To determine the size of Pre(w̄, ū), note that the

slice at position i+ 1 must be smaller than Q̄, therefore by repeating this process at most

nd times, the necklace of rank rank(w̄) + 1 is found, and hence the size of Pre(w̄, ū) is at

most nd.

Theorem 28. Let w̄ be a word of dimensions n. NextNecklace(w̄) returns the smallest

word ū > w̄ such that ū = 〈ū〉 in O(N) time and requiring no more than O(N) space.

Proof. Following Lemma 54, note that by applying the function NextPrenecklace at

most nd times, the smallest necklace greater than w̄ can be determined. As each call to

NextPrenecklace requires NextNecklace as a subroutine, to determine the next preneck-

lace of dimensions d−1, nd−1 prenecklaces of dimensions d−2 must be determined. Follow-

ing this logic, to determine the next prenecklace of dimensions d at most N
nd·nd−1·...·nd−i+1

prenecklaces of dimensions i must be considered. Therefore a total of O(N) time is needed

to compute all nd prenecklaces. As it takes at most O(N) time to determine if a word is

a necklace, this process takes at most O(N) time.

8.3.2 Unranking Necklaces

Lemma 55. The number of necklaces in |Nn
q | with a given prefix w̄ can be determined in

O(N5) time.

Proof. Let w̄ be a word of dimensions (n1, n2, . . . , nd−1, a), where a ≤ nd. To determine

the number of necklaces with a prefix w̄, two new words ū and v̄ are defined such that

ū is the smallest necklace reference with the prefix w̄, and v̄ the greatest. The value of

ū is determined by first constructing the word ū′ where ū′i = w̄i mod a. If ū′ is a necklace

representative, then ū = ū′. Otherwise using Theorem 28, the value of ū is computed

from ū′ in at most O(N) operations. Let Q̄ = q(n1,n2,...,nd−1). The word v̄ is defined
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as being equal to w̄ : Q̄nd−a. If v̄ is not a necklace representative then there exists no

necklace with w̄ as a prefix. Otherwise, the number of necklaces with w̄ as a prefix equals

RN(v̄)−RN(ū) + 1.

Using Lemma 55, a recursive unranking algorithm can be built by iteratively building the

prefix of the ith necklace in |Nn
q |.

Theorem 29. The ith necklace in Nn
q can be generated (unranked) in O

(
N6(d+1) · logd(q)

)
time with no more than O(N5) space complexity.

Proof. The unranking procedure is done in a similar manner to the one dimensional case

as presented by Sawada and Williams [92]. At a high level, the idea is to iteratively

generate the necklace by generating prefixes of increasing length. Let w̄ be the canonical

representative of the ith necklace. Further let Q̄ = q(n1,n2,...,nd−1), the word of dimensions

(n1, n2, . . . , nd−1) where every position is occupied by the symbol k. The first slice of w̄ is

determined through a binary search. Let ū be the canonical representation of jth necklace

of dimensions (n1, n2, . . . , nd−1). Note that if ū is the first slice of w̄, then the rank of

w̄ must be between the rank of the smallest necklace starting with ū and the greatest.

These necklaces are determined using the same process as laid out in Lemma 55. Let ā be

the smallest such word and b̄ the greatest. Therefore ū is the fist slice of w̄ if and only if

RN(ā) ≤ i ≤ RN(b̄. Otherwise, depending on the value of i relative to RN(ā) and RN(b̄)

the next value of ū is checked, with ū determined by a binary search. Note that there

are at most qN/nd necklaces of size (n1, n2, . . . , nd−1), the binary search requires at most

log(qN/nd) = N
nd

log k necklaces to be checked.

For the tth slice, where t ≥ 2, the process is slightly more complicated. As in the first

case, to determine if the 〈w̄t〉 = ū, the smallest and largest such words are determined

and ranked. To that end, let ā be the smallest possible word that is the canonical form

of a necklace and has the prefix w̄[1,t−1] : 〈ū〉g, and let b̄ be the greatest. The value of

ā is computed in O(N) time following the techniques outlined in Theorem 28. The word

b̄ = w̄[1,t−1] : 〈ū〉g : Q̄nd−t where g is the largest translation such that ū 6= 〈ū〉g. Using

these words, 〈w̄t〉 = ū if and only if RN(ā) ≤ i ≤ RN(b̄).

The time complexity of this process comes from the recursive nature of algorithm. In

dimension d, nd slices need to be computed, each requiring at most N
nd
· log(q) necklaces

to be ranked, the ranking having a complexity of N5. Note that while determining the

necklace that needs to be ranked has a complexity of N2, this is not multiplicative with
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the complexity of ranking as each step is done independently. To determine each of these

necklaces, a necklace of dimensions (n1, n2, . . . , nd−1) must be unranked, adding an addi-

tional complexity of nd−1 · N
nd·nd−1

· N5

n5
d
· log(q). As each dimension requires necklaces of the

dimension one lower to be computed, the total complexity is O

(
d∏
i=0

N6·log(q)∏
j∈[1,i]

n6
d−j

)
. In the

worst case, where n1 = N and ni = 1 for i ∈ [2, d], this is simplified to O
(
N6(d+1) · logd(q)

)
.

Regarding space complexity, observe that at each step it is necessary to rank the two

words sharing some prefix of length j, requiring O(N5) space. As no further information

needs to be stored beyond the necklaces being ranked and a trivial amount of information

regarding the current process of the binary search, the total space complexity is no more

than O(N5).

Lemma 56. The number of necklaces in the set Nn
p sharing a given prefix ā can be com-

puted in O(n6+q) time.

Proof. Note that the ranking process outline in Theorem 27 allows the rank of the canonical

form of any necklace to be computed within the set Nn
p in O(n6+q) time. Therefore by

comparing the ranks of the smallest and largest necklaces sharing ā as a prefix, the number

of necklaces in Nn
p sharing the prefix can be computed. Following Theorem 28, the smallest

and largest necklaces can be found in O(N) time. As the ranking process requires at most

O(n6+q) time, the total complexity of determining the number of necklaces sharing a given

prefix is O(n6+q).

Corollary 9. The ith necklace in Nn
p can be unranked in O(N (q+7)(d+1)) logd(q) time.

Proof. Fixed content multidimensional necklaces can be unranked in the same manner as

unconstrained necklaces, presented in Theorem 15. As in that theorem, a binary search

is used over the alphabet Σ to determine the ith necklace iteratively. Following Lemma

56, the number of necklaces sharing a given prefix can be computed in O(n6+q) time. The

complexity of this process is given by the same arguments as in Theorem 15, with the

additional cost due to the added complexity of ranking fixed content necklaces compared

to unconstrained necklaces, being O(N6+q) and O(N5) respectively.
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Conclusions

In this thesis we have provided a large collection of results within the theme of Crystal

Structure Prediction. These lay the foundation for future work in this theme, while leaving

open many potential directions for future research.

In Chapters 3 and 4 we looked at the hardness of this problem in a verity of settings.

Chapter 3 showed that abstract version of csp is undecidable for the 2−CMV class of en-

ergy functions including the Buckingham-Coulomb and Ising models. Chapter 4 strengths

the results of Chapter 3 showing that the problem remains NP-hard even when the size

of the unit cell is restricted. Additionally Theorem 2 shows that, for the Buckingham-

Coulomb potential and a given size of unit cell, csp remains hard to approximate within

any positive factor. Finally, Theorem 3 provides a parameterised algorithm for the fixed-

size unit cell in one dimension for any function with a cut-off distance, including both the

Buckingham-Coulomb and Ising interactions.

This leaves open the question of the hardness of alternative forms of csp. One direction

would be to look at more restricted energy functions. The goal of this direction would be to

show either undecidability or NP-hardness for our models of csp under these constraints.

One further direction to consider is moving to the continuous setting. The goal in the

continuous setting would be both to provide a formal mathematical model, and to provide

a proof of either undecidability or NP-hardness. Both of these setting would strengthen

the claims regarding the complexity of this problem in more realistic settings.

Chapter 5 provides the underlying results for the k-centre problem on cyclic words.

Theorem 10 shows that the problem of verifying a solution to the k-centre problem on

cyclic words is itself NP-hard. Theorem 11 uses de-Bruijn sequences to show that the

167
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k-centre problem for necklaces of length n can be solved within a factor of 1 +
logq (kn)

n−logq (kn) −
log2

q(kn)

2n(n−logq (kn)) . Similarly, Theorem 12 uses de-Bruijn hyper tori to show that the k-centre

problem for d-dimensional necklaces of dimensions n can be solved within a factor of

1 +
logq (kN)

N−logq (kN) −
log2

q(kN)

2N(N−logq (kN)) . Theorem 13 provides a prefix based algorithm for ap-

proximating the solution to the k-centre problem for d-dimensional necklaces within a

factor of 1 +
logq (kN)

N−logq (kN) −
log2

q(k)

2N(N−logq (kN)) .

The main open problem left by these results is on the computational complexity of

the the k-centre problem on cyclic words. While Theorem 10 shows that the problem is

NP-hard to verify, it does not show that the problem itself is NP-hard to solve. Indeed it is

possible that there exists either a better algorithm for the k-centre problem or a stronger

bound showing that our algorithm is optimal. We would make two conjectures regarding

Problem 11. First, we conject that it is like that the problem is at least NP-hard. This

conjecture is equivalent to saying that the k-sampling problem on the graphs corresponding

to the set of necklaces over the overlap distance can not be solved in faster than linear

time relative to the size of the graph. Secondly, we conject that it is likely that there is

no better polynomial time approximation algorithm for Problem 11. The gap between the

lower and upper bound is likely to be resolved by improving the lower bound through more

explicit analysis.

Chapters 6, 7, and 8 use the prefix based algorithm from Chapter 5 as motivation to

study classes of cyclic words. Chapter 6 studies the class of bracelets. Theorem 14 shows

how to rank bracelets in lexicographic order. Theorem 14 answers the question posed by

Sawada and Williams [92] as to weather or not bracelets may be ranked in polynomial time

in the affirmative. However, we leave open the second part of that open question, namely

if there exists a cubic time algorithm for ranking bracelets.

Chapter 7 covers three further classes of cyclic words: the class of direct solutions to

Diophantine equations; the class of necklace solutions to Diophantine equations; and the

class of necklaces not containing any subword from a given set F of forbidden subwords.

Theorem 19 provides an algorithm to rank a word amongst the set of direct solutions to

a linear equation A · x = C in lexicographic order in O(C · n · q2) time, where C refers

to the product of the entries of the vector C, i.e. C = C1 · C2 · . . . · Cm. Theorem 24

provides an algorithm for for ranking necklaces with forbidden subwords in O(log2(n) ·n8 ·
|F|2) time. Section 8.1 provides equations for counting multidimensional necklaces in the

general case. Section 8.1.1 extends these algorithms to the fixed content setting. Theorem
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26 provides an O(N5) time algorithm to rank multidimensional necklaces. Theorem 27

compliments Theorem 26 by providing an O(N6+q) time algorithm to rank fixed content

multidimensional necklaces. Finally Theorems 28 and 29 provide algorithms to generate

and unrank multidimensional necklaces.

While these results provide a large diversity in terms of ranking cyclic words, there are

several directions that would be useful to extend our ranking and by extensions k-centre

problem for these classes. The most natural extensions would be in generalising concepts

such as forbidden subwords and necklaces with Parikh vectors satisfying systems of linear

equations to the multidimensional case.

One particularly interesting direction would be in generalising bracelets to multiple

dimensions. There are several possible ways to do so, determined by which forms of

symmetry we wish to capture. The most natural direction would be to allow for reflections

along each dimension, in effect generalising the Dihedral group to multiple dimensions

analogously to our generalisation of the cyclic group. An alternative but very appealing

direction would be to account for rotational symmetry. This would account for rotating

each word against some two dimensional plane. While the number of potential operations

in this case could make full generalisation to the multidimensional setting difficult, even a

formal description of these words in dimensions two and three could provide a significant

reduction in the space of potential crystal structures. As such, work in this direction could

prove to be invaluable for the motivation of sampling crystal structures.

A further direction that could provide strong result would be in the field of lower

bounds. This is a large open area, as not only are there no lower bounds for ranking

bracelets, fixed content necklace or multidimensional necklaces, there are in fact no lower

bounds even for ranking necklaces. We would conject that the current O(n2) algorithm is

optimal for the necklace ranking problem, however it remains to either prove this conjec-

ture, or to strengthen it building on the techniques provided by both Abboud et al. [1]

and Bringmann [13].

Perhaps the main direction this thesis opens are those regarding the k-centre problem

on implicitly defined graphs. To the best of our knowledge these are the first results

concerning the k-centre problem for such objects. The diversity of our results regarding

the approximation ratio suggests that a similar prefix based approach may be used for

alternative structures. Some natural settings to look at would be unlabelled necklaces,

chord diagrams and partitions.

Further, by providing new means to sample diverse structures we provide a new means
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for crystal structure prediction. Not only is this a powerful tool for solving crystal struc-

ture prediction both in combination with other techniques and as a technique own its

own merits. While both further theoretical and experimental results are needed to better

understand the utilisation of these techniques, our initial theoretical analysis show great

promise as a novel tool for solving crystal structure prediction.
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Zeljko Cancarevic, and Martin Jansen. Computational design and prediction of in-

teresting not-yet-synthesized structures of inorganic materials by using building unit

concepts. Chemistry – A European Journal, 8(18):4102–4113, 2002.

[74] Wendy Myrvold and Frank Ruskey. Ranking and unranking permutations in linear

time. Information Processing Letters, 79(6):281 – 284, 2001. URL: http://www.

sciencedirect.com/science/article/pii/S0020019001001417, doi:https://

doi.org/10.1016/S0020-0190(01)00141-7.

https://doi.org/10.1038/335201a0
https://doi.org/10.1038/335201a0
http://www.sciencedirect.com/science/article/pii/S0020019001001417
http://www.sciencedirect.com/science/article/pii/S0020019001001417
https://doi.org/https://doi.org/10.1016/S0020-0190(01)00141-7
https://doi.org/https://doi.org/10.1016/S0020-0190(01)00141-7


178 Duncan Adamson

[75] A.R. Oganov. Crystal structure prediction: reflections on present status and chal-

lenges. Faraday Discuss., 211(0):643–660, 2018.

[76] Artem R Oganov and Colin W Glass. Crystal structure prediction using ab ini-

tio evolutionary techniques: Principles and applications. The Journal of chemical

physics, 124(24), 2006.

[77] Artem R Oganov, Chris J Pickard, Qiang Zhu, and Richard J Needs. Structure

prediction drives materials discovery. Nature Reviews Materials, 4(5):331–348, 2019.

[78] J. M. Pallo. Enumerating, Ranking and Unranking Binary Trees. The Com-

puter Journal, 29(2):171–175, feb 1986. URL: https://academic.oup.com/

comjnl/article-lookup/doi/10.1093/comjnl/29.2.171, doi:10.1093/comjnl/

29.2.171.

[79] Jean Pannetier, J Bassas-Alsina, Juan Rodriguez-Carvajal, and Vincent Caignaert.

Prediction of crystal structures from crystal chemistry rules by simulated annealing.

Nature, 346(6282):343–345, 1990.

[80] D. Perrin. Words. Cambridge University Press, 2 edition, 1997.

[81] Chris J Pickard and RJ Needs. High-pressure phases of silane. Physical review letters,

97(4):045504, 2006.

[82] Chris J Pickard and RJ Needs. Ab initio random structure searching. Journal of

Physics: Condensed Matter, 23(5):053201, 2011.

[83] David Pisinger. Linear time algorithms for knapsack problems with bounded weights.

Journal of Algorithms, 33(1):1–14, 1999.

[84] J. Piskorski, M. Sydow, and K. Wieloch. Comparison of string distance metrics for

lemmatisation of named entities in polish. In Language and Technology Conference,

pages 413–427, 2007.
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