

The k-centre problem for necklaces

Exploring Crystal Structures Effectively **Duncan Adamson**

Argyrios Deligkas, Vladimir Gusev, Igor Potapov January 2023

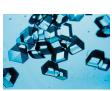
Why Crystals?

- New materials are needed to deal with the challenges of the 21st century, from strong materials for manufacturing to better conductors for electrical systems.
- Crystals are a fundamental, and very common form of matter.
- Importantly, Crystals are periodic meaning that a lot of the properties of a crystaline material can be determined from a relatively small amount of information.

Why Crystals?

- New materials are needed to deal with the challenges of the 21st century, from strong materials for manufacturing to better conductors for electrical systems.
- Crystals are a fundamental, and very common form of matter.
- Importantly, Crystals are periodic meaning that a lot of the properties of a crystaline material can be determined from a relatively small amount of information.
- In general, the problem of predicting crystal structures is undecidable.

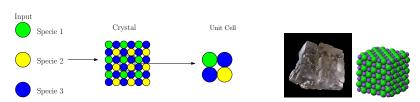
Crystals are everywhere



Crystals

Definition (Crystals)

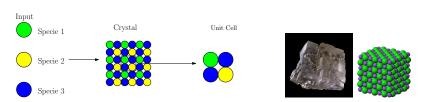
A **Crystal** is a material composed of an (infinitely) repeating **Unit Cell**.



Crystals

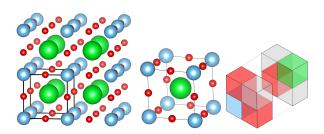
Definition (Unit Cells)

A **Unit Cell** is a contiguous region of space containing some set of **lons**.



Discrete Crystals

- In this talk we are interested in Discrete Crystals, i.e. crystals where every ion is placed on a grid.
- In this model, every cell is either empty, or wholly occupied by an ion (or block of ions).
- For simplicity we assume that each cell can contain only 1 ion, and that each ion can fit into a single cell.



1D Crystals

- In this talk we are going to focus on **1D-Crystals**¹.
- These can be thought of a crystals made from precomputed 3D-blocks, with a high degree of symmetry along two dimensions.
- The main challenge in **uniquely** representing these structures is capturing translational symmetry.



January 2023

¹C. Collins et al. "Accelerated discovery of two crystal structure types in a complex inorganic phase field". Jn: Nature 546,7657 (2017), p. 280.

Goal

Select a **representative** set of crystal structures from the set of all possible structures of a given size over a given alphabet of "blocks".

Problems

Question

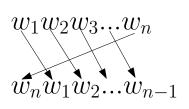
How can we represent crystals uniquely?

Question

How can we choose a **representative sample** from this representation?

Necklaces

- In 1D the problem of representation is solved using Necklaces.
- Informally a necklace is a set of words that can be reached from each other by some **translation**.
- The **translation** (or cyclic shift) of a word w by some integer i returns the word w' where $w'_i = w_{i-i \mod n}$.



abbc bbca bcab cabb

Some Notation for 1D Necklaces

For the remainder of this talk we use the following assumptions:

- Σ to denotes an alphabet, which we assume has size q.
- The Canonical form of a necklace ω (denoted ⟨ω⟩) is the Lexicographically smallest word w ∈ ω.
- \mathcal{N}_q^n denotes the set of necklaces of length n over an alphabet of size q, corresponding to the set of all crystal structures of length n over a library of q blocks.

Representative Samples

- To get a set of representative crystals, we want to choose a set of crystals that contain as many local structures as possible, in order understand the global energy space.
- As energy interaction is strongest at close range, by analysing local structures we can get a good idea about the full energy space.

Question

How do formalise this as a mathematical problem?

Finding Representative Samples

- In order to find a set of representative samples, we turn to the k-centre problem.
- Informally, the k-centre problem asks us to select a set k vertices from a graph G = (V, E) minimising the function:

$$\min_{S\subseteq_k V} \max_{v\in V} \min_{s\in S} D(s,v)$$

• Where S is a set of k vertices from V, and D(s, v) is the distance between some pair of vertices in G.

Question

How can we measure the distance between necklaces?

The Overlap Distance for Necklaces

- Following our motivation of comparing crystal structures, we need to define a distance that represents structures with similar properties.
- As much of the energy in crystaline structures is due to local interactions, we use the number of shared subwords as a basis for measuring the similarity.

Definition

The **overlap distance** between two necklaces $\tilde{\mathbf{w}}$ and $\tilde{\mathbf{u}}$ is defined as the number of shared subwords between $\tilde{\mathbf{w}}$ and $\tilde{\mathbf{u}}$, normalised by the total number of subwords.

The Overlap Distance for Necklaces

	word <i>abab</i>	word aabb	Intersection
1	$a \times 2, b \times 2$	$a \times 2, b \times 2$	
2	$ab \times 2, ba \times 2$	aa imes 1 $ab imes 1$,	
		bb imes 1, $ba imes 1$	
3	$aba \times 2, bab \times 2$	$aab \times 1, abb \times 1,$	
		bba imes 1, baa imes 1	
4	abab imes 2, $baba imes 2$	aabb imes 1, $abba imes 1$,	
		bbaa imes 1, baab imes 1	
D			?/16

The Overlap Distance for Necklaces

	abab	aabb	Intersection
1	$\mathbf{a} \times 2, \mathbf{b} \times 2$	$\mathbf{a} \times 2, \mathbf{b} \times 2$	4
2	$ab \times 2, ba \times 2$	$aa \times 1 \ ab \times 1,$	
		$bb imes 1$, $\mathbf{ba} imes 1$	2
3	$aba \times 2$, $bab \times 2$	$aab \times 1, abb \times 1,$	
		$\mathit{bba} imes 1, \mathit{baa} imes 1$	0
4	abab imes 2, $baba imes 2$	aabb imes 1, $abba imes 1$,	
		bbaa $ imes 1$, baab $ imes 1$	0
D			6/16

Challenges

- There are $O(q^n)$ necklaces in \mathcal{N}_q^n , so explicitly representing the graph is not feasible even for moderate values of n.
- Trying to determine the properties of a necklace as a crystal structure is computationally expensive.
- The graph is highly structured, with some vertices being much better than others.

Our Approach

- Our goal is to select a set of k-centres maximising the number of distinct subwords that appear in any centre.
- We do this by finding the longest length λ for which every word in Σ^λ can appear at least once in the set of centres.

Observation

Let $S \subseteq_k \mathcal{N}_q^n$ be a set of k necklaces such that every word in Σ^λ appears as a subword in at least one necklace in S. Then, every necklace in \mathcal{N}_q^n is at most $\frac{\lambda^2}{n}$ from the nearest centre in S.

de-Bruijn Sequences

Definition

The **de-Bruijn Graph** of order m over a k-ary alphabet Σ is a directed graph of q^m vertices where each vertex corresponds uniquely to some word in Σ^m . There exists an edge from v to u if and only if $v: u_m = v_1: u$.

Definition

A **de-Bruijn Sequence** of order m over a k-ary alphabet Σ is a cyclic word w of length q^m such that every word in Σ^m appears exactly once in w. In other words, w corresponds to a Hamiltonian circuit on the de-Bruijn graph.

Example of the de-Bruijn graph and sequence

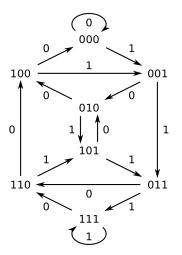


Figure 1: 00010111

de-Bruijn Sequences

- **De-Bruijn Sequences** are a classic combinatorial object.
- There are strong results for generating² and decomposing³.

January 2023

²Fred S. Annexstein. "Generating de Bruijn sequences: An efficient implementation". In: IEEE Transactions on Computers 46.2 (1997), pp. 198-200.

³T. Kociumaka, J. Radoszewski, and W. Rytter. "Computing k-th Lyndon word and decoding lexicographically minimal de Bruijn sequence". In: Symposium on Combinatorial Pattern Matching. Springer International Publishing, 2014, pp. 202–211. Duncan Adamson, Argyrios Deligkas,

de-Bruijn Sequences

- **De-Bruijn Sequences** are a classic combinatorial object.
- There are strong results for generating² and decomposing³.
- Idea. We can use de-Bruijn sequences as a basis to compute a set of centres.

January 2023

²Fred S. Annexstein. "Generating de Bruijn sequences: An efficient implementation". In: IEEE Transactions on Computers 46.2 (1997), pp. 198-200.

³T. Kociumaka, J. Radoszewski, and W. Rytter. "Computing k-th Lyndon word and decoding lexicographically minimal de Bruijn sequence". In: Symposium on Combinatorial Pattern Matching. Springer International Publishing, 2014, pp. 202–211. Duncan Adamson, Argyrios Deligkas,

One Centre

- When k=1, centre can be computed by finding the largest value of λ for which $q^{\lambda} \leq n$, giving $\lambda = \lfloor \log_{a} n \rfloor$.
- This ensures that every word of length λ appears at least once in the centre.

When k = 1, this process returns the optimal centre.

- When k > 1, a slightly more sophisticated approach is needed.
- The main challenge is determining how to partition the de-Bruijn sequence.
- **Challenge**. Just partitioning the sequence in to *k* centres will loose some words.

- When k > 1, a slightly more sophisticated approach is needed.
- The main challenge is determining how to partition the de-Bruijn sequence.
- **Challenge**. Just partitioning the sequence in to *k* centres will loose some words.
- Idea. we need to build some redundancy to the centres.

	00000100011001010011101011011111	
Centre	Word	
1	000001000110	
2	011001010011	
3	001110101101	
4	110111110000	

Figure 2: Example of how to split the de Bruijn sequence of order 5 between 4 centres of length 12. Highlighted parts are the shared subwords between two centres.

Theorem

The k-centre problem for \mathcal{N}_q^n can be approximated in $O(n \cdot k)$ time with an approximation factor of $1 + \frac{\log_q(k \cdot n)}{n - \log_q(k \cdot n)} - \frac{\log_q^2(k \cdot n)}{2n(n - \log_q(k \cdot n))}$.

Other Results

- It is NP hard to determine the distance between an arbitrary set of centres and the furthest necklace $w \in \mathcal{N}_a^n$.
- Problem with **multidimensional** necklaces can be solved in $O(k \cdot N^2)$ time within a factor of

$$1 + \frac{\log_q(kN)}{N - \log_q(kN)} - \frac{\log_q^2(kN)}{2N(N - \log_q(kN))}$$
, where $N = \prod_{i=1}^d n_i$.

• The **online** variant of this problem can be solved within a factor of $1 + \frac{2 \log^2(iN) - \log_q^2(i/3d)}{2N - 2 \log_q^2(i \cdot N)}$.

Future Work

- Check if this algorithm is optimal by finding a stronger lower bound or find a stronger algorithm matching the lower bound.
- Extend these results to other classes of cyclic words.
- Extend these results to other similarity metrics (edit distance, LCS, etc.).