The Leverhulme Research Centre for Functional Materials Design

(Un)ranking k-subsequence universal words Duncan Adamson 15/06/2023

Conventions

- All words are defined over the alphabet $\Sigma=[1,2, \ldots, \sigma]$. For simplicity, each symbol is also treated as its numeric value.
- Σ^{n} denotes the set of all words over Σ of length exactly n.
- Given a word w, the notation $w[i]$ is used to denote the $i^{t h}$ symbol of w.
- ε is used to denote the empty word.
- $A(w)$ is used to denote the alphabet formed by the symbols from w.

Subsequences (Just so we are all on the same page)

Definition

A subsequence of a word w is a sequence of that can be found be deleting some some set of symbols from w, i.e. a word that can be written as $w\left[i_{1}\right] w\left[i_{2}\right] \ldots w\left[i_{j}\right]$ where $i_{1}<i_{2}<\cdots<i_{j}$.

Definition
A subword of a word w is a contiguous subsequence of $w w$, i.e. a subsequence of the form $w[i] w[i+1] \ldots w[i+j]$.

Example

123 is a subsequence but not a subword of 112233. 1223 is both a subsequence and a subword.

Subsequences (Just so we are all on the same page)

Definition

A subsequence of a word w is a sequence of that can be found be deleting some some set of symbols from w, i.e. a word that can be written as $w\left[i_{1}\right] w\left[i_{2}\right] \ldots w\left[i_{j}\right]$ where $i_{1}<i_{2}<\cdots<i_{j}$.

Definition
A subword of a word w is a contiguous subsequence of $w w$, i.e. a subsequence of the form $w[i] w[i+1] \ldots w[i+j]$.

Example

123 is a subsequence but not a subword of 112233. 1223 is both a subsequence and a subword.

k-Subsequence Universality

Definition

A word w is k-subsequence universal over the alphabet Σ if and only if every word in Σ^{k} is a subsequence of w. The set of all k-subsequence universal words of length n is denoted $\mathcal{U}(n, k, \sigma)$.

k-Subsequence Universality Example

Example
 Let $w=11223231$. Then w is 2 subsequence universal over $\Sigma=[1,2,3]$.

11	$\mathbf{1 1 2 2 3 2 3 1}$
12	$\mathbf{1 1 2 2 3 2 3 1}$
13	$\mathbf{1 1 2 2 3 2 3 1}$
21	11223231
22	11223231
23	11223231
31	11223231
32	11223231
33	11223231

k-Subsequence Universality Example

Example
 Let $W=22323111$. Then w is not 2 subsequence universal over $\Sigma=[1,2,3]$.

11	22323111
12	$22323111(2)$
13	$22323111(3)$
21	22323111
22	22323111
23	$\mathbf{2 2 3 2 3 1 1 1}$
31	22323111
32	22323111
33	22323111

Universality Index

Definition

The universality index of word w, denoted $\zeta(w)$, is the maximum value such that w is $\zeta(w)$ universal.

Example

The universality index of 1122321 is $\zeta(11223231)=2$, the universality index of 22323111 is $\zeta(22323111)=1$.

Combinatorial Results

Arches

Definition
 An Arch in a word w is a subword $w[i] w[i+1] \ldots w[i+j]$ containing each symbol in Σ at least once, and the symbol $w[i+j]$ exactly once.

Arches

Example

Given the word $w=11231123$ the possible arches are:

- 11231123
- 11231123
- 11231123
- 11231123
- 11231123
- 11231123

Universal Subsequences and Free Symbols in Arches

Definition
 Given an arch w, the Universal Subsequence of w is the subsequence u of length σ such that $u[1]$ is the first symbol to appear in $w, u[2]$ is the second unique symbol, and $u[i]$ is the $i^{t h}$ unique symbol.

Definition

Given an arch w and index $i, w[i]$ is a Free Symbol if and only if there exsits some index $j<i$ such that $w[i]=w[j]$.

12112233214

Arch Factorisations

Definition

Given the word w, the Arch Factorisation of w, denoted $\operatorname{Arch}(w)$ is the set of words $\operatorname{Arch}(w)=u_{1}, u_{2}, \ldots, u_{m}, v$ such that:

- $w=u_{1} u_{2} \ldots u_{m} v$,
- $\forall i \in[m], u_{i}$ is an Arch,
- v is not an arch.

Example
 Given the word $w=112322133211, \operatorname{Arch}(w)=1123,2213,321,1$.

Arch Factorisations and Universality

> Theorem (Day et al. ${ }^{1}$)
> A word $w \in \Sigma^{n}$ is k-subsequence universal over Σ if and only if $\operatorname{Arch}(w)$ contains at least k arches. Further, $\operatorname{Arch}(w)$ can be computed in $O(n)$ time.

[^0]
Counting k-subsequence universal words

High Level Sketch

- We introduce the set $S(v, n)$,containing every k-subsequence universal word in \sum^{n} with the prefix v, formally

$$
S(v, n)=\left\{v u \mid u \in \Sigma^{n-|v|}, \zeta(v u) \geq k\right\} .
$$

- Note that $S(\varepsilon, n)$ is the set if all k-subsequence universal words of length n.
- Idea: use the size of $S(v x, n)$ to count the size of $S(v, n)$, for every $x \in \Sigma$.

Using $S(v, n)$

Observation
 Given $v \in \Sigma^{\ell}, S(v, n)=\bigcup_{x \in \Sigma} S(v x, n)$ and further, for any pair of symbols $x, y \in \Sigma$ such that $x \neq y, S(v x, n) \cap S(v y, n)=\emptyset$.

Counting the size of $S(v, n)$

Lemma

Given the word v with the arch decomposition $\operatorname{Arch}(v)=u_{1}, u_{2}, \ldots, u_{m}, v^{\prime}$. Then, given the pair of symbols $x, y \in \Sigma$ such that both x and y are in v^{\prime}, the size of $S(v x, n)$ is the same as $S(v y, n)$.

Proof (Sketch).

Let w be a word such that $\zeta(v x w)=k$ with the arch decomposition $\operatorname{Arch}(v \times w)=w_{1}, w_{2}, \ldots, w_{k} w^{\prime}$. Note that $w_{m+1}=v^{\prime} x u$, for some prefix u of w such that u contains every symbol in Σ that does not appear in $v^{\prime} x$, and by extension v^{\prime}. Therefore $v^{\prime} y u$ is an arch and hence $\zeta(v y w)=k$.

Counting the size of $S(v, n)$

Lemma

Given the word v with the arch decomposition $\operatorname{Arch}(v)=u_{1}, u_{2}, \ldots, u_{m}, v^{\prime}$. Then, given the pair of symbols $x, y \in \Sigma$ such that neither x nor y are in v^{\prime}, the size of $S(v x, n)$ is the same as $S(v y, n)$.

Proof (Sketch).

Let w be a word such that $\zeta(v x w)=k$ with the arch decomposition $\operatorname{Arch}(v x w) \geq w_{1}, w_{2}, \ldots, w_{k} w^{\prime}$. Note that $w_{m+1}=v^{\prime} x u$, for some prefix u of w such that u contains every symbol in Σ that does not appear in $v^{\prime} x$, and by extension v^{\prime}.
Now let u^{\prime} be the word constructed by substituting every occurrence of y in u with x, and every occurrence of x in u with y.
Then $v^{\prime} y u^{\prime}$ is an arch and hence $\zeta(v y w)>k$.
15/06/2023

Counting the size of $S(v, n)$

- Using these observations, the size of $S(v, n)$, where $\operatorname{Arch}(v)=u_{1}, u_{2}, \ldots, u_{m} v^{\prime}$, can be computed by splitting it in to two cases:
- The size of the set $S(v x, n)$, where x is some symbol in v^{\prime}.
- The size of the set $S(v y, n)$, where y is some symbol not in v^{\prime}. Combining these gives the equation:

$$
|S(v, n)|=\left|A\left(v^{\prime}\right)\right||S(v x, n)|+\left(\sigma-\left|A\left(v^{\prime}\right)\right|\right)|S(v y, n)| .
$$

Recursively Counting $S(v, n)$

- Using the outline above, we make a new function $\operatorname{CS}(q, m, c)$.
- Given some prefix $v \in \Sigma^{*}$ such that $\operatorname{Arch}(v)=v_{1}, v_{2}, \ldots, v_{\ell}, v^{\prime}$, to count the size of the set $S(v, n)$, the parameters for $C S(q, m, c)$ are derived as follows:
- q is equal to the number of symbols in Σ that are not in v^{\prime}, $\sigma-\left|A\left(v^{\prime}\right)\right|$.
- c is the (minimum) number of Arches that need to be present in each suffix in $S(v, n)$, i.e. $k-\ell$.
- m is the remaining number of "free" symbols (symbols that do not need to belong to any arch), i.e. $n-(|v|+q+(c-1) \sigma)$.

$\operatorname{CS}(q, m, c)$

Using the same two cases as before, the value of $\operatorname{CS}(q, m, c)$ is split in to two main cases:

- Counting the size of the set $S(v x, n)$, where x is some symbol in v^{\prime}, equal to $\operatorname{CS}(q, m-1, c)$ as any such x must be a free symbol, i.e. not in the universal subsequence of the arch containing it. Further, there are $(\sigma-q)$ possible values of x.
- Counting the size of the set $S(v y, n)$, where y is some symbol not in v^{\prime}, equal to $\operatorname{CS}(q-1, m, c) m$ as any such symbol must be one of the q symbols that do not appear in v^{\prime}. Further, there are q possible values of y.

$\operatorname{CS}(q, m, c)$

Additionally, there are a set of three special cases:

- If $q=0$ and $c>0$, then $v^{\prime}=\varepsilon$, and whatever the next symbol is, it must belong to the universal subsequence of the first arch of the suffix, giving the size of $S(v x, n)$ as 0 and $S(v y, n)$ as $C S(\sigma-1, m, c-1)$. Note that there are σ possible values of y.
- If $c=0$ and $q=0$, then every remaining symbol is "free" in that it does not matter if there are any more arches.
Therefore, the size of $S(v, n)$ is σ^{m}.
- If $m=0$ then every remaining symbol must be in the universal subsequence of some arch, giving $|S(v, n)|=q!(\sigma!)^{c}$.

$C S(q, m, c)$

$$
\operatorname{CS}(q, m, c)= \begin{cases}\sigma^{m} & q=0, c=0 \\ q!(\sigma!)^{c} & m=0 \\ \sigma C S(\sigma-1, m, c-1) & q=0, c>0 \\ (\sigma-q) C S(q, m-1, c) & q>0, c>0, m>0 \\ +q C S(q-1, m, c) & \end{cases}
$$

Counting the number of k-subsequence universal words

Theorem

The size of $\mathcal{U}(n, k, \sigma)$ can be computed in $O(n k \sigma)$ time.

Ranking

Where we actually talk about the title of the paper

Ranking

Definition

Let $\mathcal{U}(n, k, \sigma)$ be the set of all k-subsequence universal words of length n over the alphabet $[1,2, \ldots, \sigma]$. The rank of some word $w \in \mathcal{U}(n, k, \sigma)$ is the number of words in $\mathcal{U}(n, k, \sigma)$ that are lexicographically smaller than w.

High Level Idea

- Starting with the empty word ε, the idea is to count the number of words smaller than the input word w, sharing a a given prefix of w.
- First, we count the number of words starting with any symbol $x<w[1]$, given by $(w[1]-1) C S(\sigma-1, n-k \sigma, k)$.
- Then, we count the number of words with the prefix $w[1]$ followed by some symbol $x<w[2]$. This is split in to two cases. If $x=w[1]$, then the number of such words is $C S(q-1, m-1, k)$, otherwise the number of such words is $\operatorname{CS}(q-2, m, k)$.

High Level Idea

At the $i^{\text {th }}$ step, we count the number of words with the prefix $w[1] w[2] \ldots w[i]$ followed by some $x<w[i+1]$. Letting $\operatorname{Arch}(w[1] w[2] \ldots w[i])=v_{1} v_{2} \ldots v_{\ell} w^{\prime}, q=\sigma-A\left(w^{\prime}\right)$, and $m=n-(i+q+(k-\ell-1) \sigma)$ the number of such words is given by:

$$
\sum_{x \in \Sigma} \begin{cases}0 & x \geq w[i+1] \\ C S(q-1, m, k-\ell-1) & x \notin A\left(w^{\prime}\right) \\ C S(q, m-1, k-\ell-1) & x \in A\left(w^{\prime}\right)\end{cases}
$$

Full Ranking Algorithm

$$
\sum_{i \in[1 \ldots . . n]} \sum_{x \in \Sigma} \begin{cases}0 & x \geq w[i] \\ C S(q-1, m, k-\ell-1) & x \notin A\left(w^{\prime}\right) \\ C S(q, m-1, k-\ell-1) & x \in A\left(w^{\prime}\right)\end{cases}
$$

Ranking Efficiently

- Our counting proccess works by computing the value of $\operatorname{CS}(q, m, c)$, for every $q \in[1,2, \ldots, \sigma], m \in[1,2, \ldots, n-k \sigma]$ and $c \in[1,2, \ldots, k]$ in $O(n k \sigma)$ time. Therefore, we assume this has been precomputed.
- At each step, the algorithm needs to find the value of $C S(q, m, c)$ for at most σ-values.
- As there are n such steps, this requires the table of $C S(q, m, c)$ values at most $O(n \sigma)$ times.

Ranking Result

Theorem
 The rank of a word w within the set $\mathcal{U}(n, k, \sigma)$ can be computed in $O(n k \sigma)$ time.

Unranking and Enumeration

Unranking

Definition

Let $\mathcal{U}(n, k, \sigma)$ be the set of all k-subsequence universal words of length n over the alphabet $[1,2, \ldots, \sigma]$. The unranking problem asks, for a given input value i, what is the word in $\mathcal{U}(n, k, \sigma)$ with a rank of i.

Unranking the $j^{\text {th }}$ symbol

x satisfies:

$$
\begin{gathered}
\sum_{y \in[1,2, \ldots, x-1]}|S(w[1] w[2] \ldots w[j-1] y)|<i \\
\sum|S(w[1] w[2] \ldots w[j-1] y)| \geq i
\end{gathered}
$$

Outline

- Letting w be the word with a rank of i, the value of $w[1]$ is determined by finding the symbol x such that $x C S(q-1, m, k) \leq i<(x+1) C S(q-1, m, k)$.
- Proceeding iteratively, the value of $w[j]$ is determined by finding the symbol x such that:
- The rank r_{s} of the word v_{s}, defined as the smallest word in $\mathcal{U}(n, k, \sigma)$ with the prefix $w[1] w[2] \ldots w[j-1] x$, is less than or equal to i.
- The rank r_{l} of the word v_{l}, defined as the largest word in $\mathcal{U}(n, k, \sigma)$ with the prefix $w[1] w[2] \ldots w[j-1] x$, is greater than or equal to i.

Theorem

The $i^{\text {th }}$ word in the set $\mathcal{U}(n, k, \sigma)$ can be computed in $O(n \sigma)$ time after $O(n k \sigma)$ preproccessing.

Enumerating

Theorem
 Every word in $\mathcal{U}(n, k, \sigma)$ can be output with at most $O(n \sigma)$ delay after $O(n k \sigma)$ preproccessing time.

Conclusion

- An $O(n k \sigma)$ time algorithm for counting the size of $\mathcal{U}(n, k, \sigma)$;
- An $O(n k \sigma)$ time algorithm for ranking words in the set $\mathcal{U}(n, k, \sigma)$;
- An $O(n k \sigma)$ time algorithm for unranking words from the set $\mathcal{U}(n, k, \sigma)$;
- An algorithm for enumerating the set $\mathcal{U}(n, k, \sigma)$ with $O(n \sigma)$ delay after $O(n k \sigma)$ preprocessing.

Future Work

- Finding a better way of counting the number of k-subsequence universal words.
- As well as being an interesting result on its own, this may allow us to speed up the ranking, unranking and enumerating results.
- Reduce the delay in the enumeration proccess.
- This should either be to $O(n)$, if each word is explicitly represented, or sub-linear if the word in the memory is simply being updated at each time step.

[^0]: ${ }^{1}$ Joel D. Day et al. "The Edit Distance to k-Subsequence Universality". In: 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). Ed. by Markus Bläser et al. Vol. 187. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl -Leibniz-Zentrum für Informatik, 2021, 25:1-25:19.

