

The Leverhulme Research Centre for Functional Materials Design

(Un)ranking *k*-subsequence universal words Duncan Adamson 15/06/2023

Imperial College London

King Abdullah University of Science and Technology

Conventions

- All words are defined over the alphabet Σ = [1, 2, ..., σ]. For simplicity, each symbol is also treated as its numeric value.
- Σ^n denotes the set of all words over Σ of length exactly n.
- Given a word w, the notation w[i] is used to denote the ith symbol of w.
- ε is used to denote the empty word.
- A(w) is used to denote the alphabet formed by the symbols from w.

Subsequences (Just so we are all on the same page)

Definition

A **subsequence** of a word w is a sequence of that can be found be deleting some some set of symbols from w, i.e. a word that can be written as $w[i_1]w[i_2] \dots w[i_j]$ where $i_1 < i_2 < \dots < i_j$.

Definition

A **subword** of a word w is a contiguous subsequence of ww, i.e. a subsequence of the form $w[i]w[i+1] \dots w[i+j]$.

Example

123 is a subsequence but not a subword of 112233. 1223 is both a subsequence and a subword.

(Un)ranking k-subsequence universal words

Subsequences (Just so we are all on the same page)

Definition

A **subsequence** of a word w is a sequence of that can be found be deleting some some set of symbols from w, i.e. a word that can be written as $w[i_1]w[i_2] \dots w[i_j]$ where $i_1 < i_2 < \dots < i_j$.

Definition

A **subword** of a word w is a contiguous subsequence of ww, i.e. a subsequence of the form $w[i]w[i+1] \dots w[i+j]$.

Example

123 is a subsequence but not a subword of 1**1223**3. 1223 is both a subsequence and a subword.

(Un)ranking k-subsequence universal words

k-Subsequence Universality

Definition

A word w is k-subsequence universal over the alphabet Σ if and only if every word in Σ^k is a subsequence of w. The set of all k-subsequence universal words of length n is denoted $\mathcal{U}(n, k, \sigma)$.

k-Subsequence Universality Example

Example

Let w = 11223231. Then w is 2 subsequence universal over $\Sigma = [1, 2, 3]$.

11	11 223231
12	1 1 2 23231
13	1 122 3 231
21	11 2 2323 1
22	11 22 3231
23	11 2 2 3 231
31	1122 3 23 1
32	1122 32 31
33	1122 3 2 3 1

(Un)ranking k-subsequence universal words

k-Subsequence Universality Example

Example

Let W = 22323111. Then w is **not** 2 subsequence universal over $\Sigma = [1, 2, 3]$.

(Un)ranking k-subsequence universal words

Universality Index

Definition

The **universality index** of word w, denoted $\zeta(w)$, is the maximum value such that w is $\zeta(w)$ universal.

Example

The universality index of 1122321 is $\zeta(11223231) = 2$, the universality index of 22323111 is $\zeta(22323111) = 1$.

(Un)ranking k-subsequence universal words

Combinatorial Results

Definitions Combinatorial Results Counting k-subsequence universal words Ranking Unranking and Enumeration Conclusion

Arches

Definition An **Arch** in a word w is a subword $w[i]w[i+1] \dots w[i+j]$ containing each symbol in Σ at least once, and the symbol w[i+j] **exactly** once.

Definitions Combinatorial Results Counting k-subsequence universal words Ranking Unranking and Enumeration Conclusion

Arches

Example

Given the word w = 11231123 the possible arches are:

- **1123**1123
- 1**123**1123
- 11**231**123
- 112**3112**3
- 1123**1123**
- 11231**123**

Universal Subsequences and Free Symbols in Arches

Definition

Given an arch w, the **Universal Subsequence** of w is the subsequence u of length σ such that u[1] is the first symbol to appear in w, u[2] is the second unique symbol, and u[i] is the i^{th} unique symbol.

Definition

Given an arch w and index i, w[i] is a **Free Symbol** if and only if there exsits some index j < i such that w[i] = w[j].

12112233214

(Un)ranking k-subsequence universal words

Arch Factorisations

Definition

Given the word w, the **Arch Factorisation** of w, denoted Arch(w) is the set of words $Arch(w) = u_1, u_2, \ldots, u_m, v$ such that:

- $w = u_1 u_2 \ldots u_m v$,
- $\forall i \in [m], u_i \text{ is an Arch,}$
- v is not an arch.

Example

Given the word w = 112322133211, Arch(w) = 1123, 2213, 321, 1.

(Un)ranking k-subsequence universal words

```
Arch Factorisations and Universality
```

Theorem (Day et al.¹)

A word $w \in \Sigma^n$ is k-subsequence universal over Σ if and only if Arch(w) contains at least k arches. Further, Arch(w) can be computed in O(n) time.

¹Joel D. Day et al. "The Edit Distance to k-Subsequence Universality". In: *38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).* Ed. by Markus Bläser et al. Vol. 187. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021, 25:1–25:19.

(Un)ranking k-subsequence universal words

Counting *k*-subsequence universal words

High Level Sketch

 We introduce the set S(v, n), containing every k-subsequence universal word in Σⁿ with the prefix v, formally

$$S(v,n) = \{vu \mid u \in \Sigma^{n-|v|}, \zeta(vu) \geq k\}.$$

- Note that S(ε, n) is the set if all k-subsequence universal words of length n.
- Idea: use the size of S(vx, n) to count the size of S(v, n), for every x ∈ Σ.

Definitions Combinatorial Results Counting k-subsequence universal words Ranking Unranking and Enumeration Conclusion

Using S(v, n)

Observation Given $v \in \Sigma^{\ell}$, $S(v, n) = \bigcup_{x \in \Sigma} S(vx, n)$ and further, for any pair of symbols $x, y \in \Sigma$ such that $x \neq y$, $S(vx, n) \cap S(vy, n) = \emptyset$.

(Un)ranking k-subsequence universal words

Duncan Adamson

15/06/2023 12 / 27

Counting the size of S(v, n)

Lemma

Given the word v with the arch decomposition $Arch(v) = u_1, u_2, \ldots, u_m, v'$. Then, given the pair of symbols $x, y \in \Sigma$ such that both x and y are in v', the size of S(vx, n) is the same as S(vy, n).

Proof (Sketch).

Let w be a word such that $\zeta(vxw) = k$ with the arch decomposition $Arch(vxw) = w_1, w_2, \ldots, w_kw'$. Note that $w_{m+1} = v'xu$, for some prefix u of w such that u contains every symbol in Σ that does not appear in v'x, and by extension v'. Therefore v'yu is an arch and hence $\zeta(vyw) = k$.

(Un)ranking k-subsequence universal words

Counting the size of S(v, n)

Lemma

Given the word v with the arch decomposition $Arch(v) = u_1, u_2, \ldots, u_m, v'$. Then, given the pair of symbols $x, y \in \Sigma$ such that neither x nor y are in v', the size of S(vx, n) is the same as S(vy, n).

Proof (Sketch).

Let w be a word such that $\zeta(vxw) = k$ with the arch decomposition $Arch(vxw) \ge w_1, w_2, \ldots, w_kw'$. Note that $w_{m+1} = v'xu$, for some prefix u of w such that u contains every symbol in Σ that does not appear in v'x, and by extension v'. Now let u' be the word constructed by substituting every occurrence of y in u with x, and every occurrence of x in u with y. Then v'yu' is an arch and hence $\zeta(vyw) \ge k$. (Un)ranking k-subsequence universal words = 0

Counting the size of S(v, n)

- Using these observations, the size of S(v, n), where Arch(v) = u₁, u₂,..., u_mv', can be computed by splitting it in to two cases:
 - The size of the set S(vx, n), where x is some symbol in v'.
 - The size of the set S(vy, n), where y is some symbol not in v'.

Combining these gives the equation:

 $| S(v, n) | = | A(v') || S(vx, n) | + (\sigma - | A(v') |) | S(vy, n) |.$

Recursively Counting S(v, n)

- Using the outline above, we make a new function CS(q, m, c).
- Given some prefix $v \in \Sigma^*$ such that $Arch(v) = v_1, v_2, \dots, v_\ell, v'$, to count the size of the set S(v, n), the parameters for CS(q, m, c) are derived as follows:
 - q is equal to the number of symbols in Σ that are not in v', σ- | A(v') |.
 - c is the (minimum) number of Arches that need to be present in each suffix in S(v, n), i.e. $k \ell$.
 - *m* is the remaining number of "free" symbols (symbols that do not need to belong to any arch), i.e. *n* (| *v* | +*q* + (*c* 1)*σ*).

CS(q, m, c)

Using the same two cases as before, the value of CS(q, m, c) is split in to two main cases:

- Counting the size of the set S(vx, n), where x is some symbol in v', equal to CS(q, m - 1, c) as any such x must be a free symbol, i.e. not in the universal subsequence of the arch containing it. Further, there are (σ - q) possible values of x.
- Counting the size of the set S(vy, n), where y is some symbol not in v', equal to CS(q 1, m, c)m as any such symbol must be one of the q symbols that do not appear in v'. Further, there are q possible values of y.

CS(q, m, c)

Additionally, there are a set of three special cases:

- If q = 0 and c > 0, then v' = ε, and whatever the next symbol is, it must belong to the universal subsequence of the first arch of the suffix, giving the size of S(vx, n) as 0 and S(vy, n) as CS(σ − 1, m, c − 1). Note that there are σ possible values of y.
- If c = 0 and q = 0, then every remaining symbol is "free" in that it does not matter if there are any more arches. Therefore, the size of S(v, n) is σ^m.
- If m = 0 then every remaining symbol must be in the universal subsequence of some arch, giving | S(v, n) |= q!(σ!)^c.

Definitions Combinatorial Results Counting k-subsequence universal words Ranking Unranking and Enumeration Conclusion

CS(q, m, c)

$$CS(q, m, c) = \begin{cases} \sigma^m & q = 0, c = 0 \\ q!(\sigma!)^c & m = 0 \\ \sigma CS(\sigma - 1, m, c - 1) & q = 0, c > 0 \\ (\sigma - q)CS(q, m - 1, c) \\ +qCS(q - 1, m, c) & q > 0, c > 0, m > 0 \end{cases}$$

(Un)ranking k-subsequence universal words

Duncan Adamson

15/06/2023 15 / 27

Counting the number of k-subsequence universal words

Theorem The size of $\mathcal{U}(n, k, \sigma)$ can be computed in $O(nk\sigma)$ time.

(Un)ranking k-subsequence universal words

Duncan Adamson

15/06/2023 16 / 27

Ranking

Where we actually talk about the title of the paper

(Un)ranking k-subsequence universal words

Duncan Adamson

15/06/2023 16 / 27

Definitions Combinatorial Results Counting k-subsequence universal words Ranking Unranking and Enumeration Conclusion

Ranking

Definition Let $\mathcal{U}(n, k, \sigma)$ be the set of all *k*-subsequence universal words of length *n* over the alphabet $[1, 2, ..., \sigma]$. The rank of some word $w \in \mathcal{U}(n, k, \sigma)$ is the number of words in $\mathcal{U}(n, k, \sigma)$ that are lexicographically smaller than *w*.

(Un)ranking k-subsequence universal words

Duncan Adamson

15/06/2023 17 / 27

High Level Idea

- Starting with the empty word ε, the idea is to count the number of words smaller than the input word w, sharing a a given prefix of w.
- First, we count the number of words starting with any symbol x < w[1], given by $(w[1] 1)CS(\sigma 1, n k\sigma, k)$.
- Then, we count the number of words with the prefix w[1] followed by some symbol x < w[2]. This is split in to two cases. If x = w[1], then the number of such words is CS(q-1, m-1, k), otherwise the number of such words is CS(q-2, m, k).

High Level Idea

At the *i*th step, we count the number of words with the prefix $w[1]w[2] \dots w[i]$ followed by some x < w[i+1]. Letting $Arch(w[1]w[2] \dots w[i]) = v_1v_2 \dots v_\ell w', q = \sigma - A(w')$, and $m = n - (i + q + (k - \ell - 1)\sigma)$ the number of such words is given by:

$$\sum_{x \in \Sigma} \begin{cases} 0 & x \ge w[i+1] \\ CS(q-1,m,k-\ell-1) & x \notin A(w') \\ CS(q,m-1,k-\ell-1) & x \in A(w') \end{cases}$$

(Un)ranking k-subsequence universal words

Full Ranking Algorithm

$$\sum_{i \in [1...n]} \sum_{x \in \Sigma} \begin{cases} 0 & x \ge w[i] \\ CS(q-1, m, k-\ell-1) & x \notin A(w') \\ CS(q, m-1, k-\ell-1) & x \in A(w') \end{cases}$$

(Un)ranking k-subsequence universal words

Ranking Efficiently

- Our counting process works by computing the value of CS(q, m, c), for every q ∈ [1, 2, ..., σ], m ∈ [1, 2, ..., n − kσ] and c ∈ [1, 2, ..., k] in O(nkσ) time. Therefore, we assume this has been precomputed.
- At each step, the algorithm needs to find the value of CS(q, m, c) for at most σ-values.
- As there are n such steps, this requires the table of CS(q, m, c) values at most O(nσ) times.

Ranking Result

Theorem The rank of a word w within the set $U(n, k, \sigma)$ can be computed in $O(nk\sigma)$ time.

Definitions Combinatorial Results Counting k-subsequence universal words Ranking Unranking and Enumeration Conclusion

Unranking and Enumeration

Unranking

Definition

Let $\mathcal{U}(n, k, \sigma)$ be the set of all *k*-subsequence universal words of length *n* over the alphabet $[1, 2, \ldots, \sigma]$. The unranking problem asks, for a given input value *i*, what is the word in $\mathcal{U}(n, k, \sigma)$ with a rank of *i*.

Definitions Combinatorial Results Counting k-subsequence universal words Ranking Unranking and Enumeration Conclusion

Unranking the j^{th} symbol

x satisfies:

$$\sum_{y \in [1,2,...,x-1]} |S(w[1]w[2]...w[j-1]y)| < i$$

 $\sum_{y \in [1,2,...,x]} |S(w[1]w[2]...w[j-1]y)| \ge i.$

(Un)ranking k-subsequence universal words

Outline

- Letting w be the word with a rank of i, the value of w[1] is determined by finding the symbol x such that xCS(q − 1, m, k) ≤ i < (x + 1)CS(q − 1, m, k).
- Proceeding iteratively, the value of w[j] is determined by finding the symbol x such that:
 - The rank r_s of the word v_s , defined as the smallest word in $\mathcal{U}(n, k, \sigma)$ with the prefix $w[1]w[2] \dots w[j-1]x$, is less than or equal to *i*.
 - The rank r_l of the word v_l , defined as the largest word in $\mathcal{U}(n, k, \sigma)$ with the prefix $w[1]w[2] \dots w[j-1]x$, is greater than or equal to *i*.

Theorem

The *i*th word in the set $U(n, k, \sigma)$ can be computed in $O(n\sigma)$ time after $O(nk\sigma)$ preprocessing.

(Un)ranking k-subsequence universal words

Enumerating

Theorem

Every word in $U(n, k, \sigma)$ can be output with at most $O(n\sigma)$ delay after $O(nk\sigma)$ preprocessing time.

Conclusion

- An $O(nk\sigma)$ time algorithm for counting the size of $U(n, k, \sigma)$;
- An $O(nk\sigma)$ time algorithm for ranking words in the set $U(n, k, \sigma)$;
- An O(nkσ) time algorithm for unranking words from the set U(n, k, σ);
- An algorithm for enumerating the set U(n, k, σ) with O(nσ) delay after O(nkσ) preprocessing.

Future Work

- Finding a better way of counting the number of *k*-subsequence universal words.
 - As well as being an interesting result on its own, this may allow us to speed up the ranking, unranking and enumerating results.
- Reduce the delay in the enumeration proccess.
 - This should either be to O(n), if each word is explicitly represented, or sub-linear if the word in the memory is simply being updated at each time step.