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Preliminaries Subsequence Universality for Languages k-∃-universal k − ∀-Universality Counting and Ranking Conclusion

Subsequences

Definition
A word v is a subsequence of the word w , if there exists a set of
positions positions 1 ≤ i1 < i2 < . . . < ik ≤ |w |, such that
v = w [i1]w [i2] · · ·w [ik ], otherwise, v is an Absent Subsequence
of v . A word w is k-subsequence universal if every word of length
k is a subsequence of w .

w = thethousandkyoto

v = tt
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Subsequences

Definition
A word v is a subsequence of the word w , if there exist positions
1 ≤ i1 < i2 < . . . < ik ≤ |w |, such that v = w [i1]w [i2] · · ·w [ik ],
otherwise, v is an Absent Subsequence of v . A word w is
k-subsequence universal if every word of length k is a subsequence
of w .

w = thethousandkyoto

v = tenkyoto
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Subsequences

Definition
A word v is a subsequence of the word w , if there exist positions
1 ≤ i1 < i2 < . . . < ik ≤ |w |, such that v = w [i1]w [i2] · · ·w [ik ],
otherwise, v is an Absent Subsequence of v . A word w is
k-subsequence universal if every word of length k is a subsequence
of w .

w = thethousandkyoto

v = tokyo
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Subsequences

Definition
A word v is a subsequence of the word w , if there exist positions
1 ≤ i1 < i2 < . . . < ik ≤ |w |, such that v = w [i1]w [i2] · · ·w [ik ],
otherwise, v is an Absent Subsequence of v . A word w is
k-subsequence universal if every word of length k is a subsequence
of w .

w = thethousandkyoto

v = osaka
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Subsequences and Universality

Notation. Subseq(w) denotes the set of subsequences of w ,
Subseqk(w) denotes the set of subsequences of length exactly
k .

A word w is k-universal if Subseqk(w) = Σk .

Subseq(11100) = {1, 0, 00, 10, 11, 100, 110, 111, 1100, 1110, 11100}
Subseq3(11100) = {100, 110, 111}
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Universality Index

Definition
The universality index ι(w) is the unique integer such that w is
ι(w)-universal but not (ι(w) + 1)-universal.

Definition (Arch-Factorisation, Hébrard 1991)

Let w ∈ Σ∗. Then w = arw (1) · · · arw (ι(w))r(w) such that
ι(arw (i)) = 1, the last letter of arw (i) occurs exactly once in
arw (i) and ι(r(w)) = 0. arw (i) are called the arches of w and
r(w) is called the rest of w .
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Arch Factorisation

w =1112223123321112

=(1112223)(123)(321)(112)

ar1(w) =1112223

ar2(w) =123

ar3(w) =321

r(w) =112

ι(w) =3
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Finite Automata

Definition
A finite automaton is a 5-tuple A = (Q,Σ, δ, q0,F ), where Q is a
finite set of states, Σ is an alphabet, δ : Q × Σ → 2Q is the
transition function, q0 ∈ Q is the initial state and F ⊆ Q is a set
of final states. If |δ(q, a)| ≤ 1 for all q ∈ Q and a ∈ Σ we call A
deterministic (DFA), otherwise we call it non-deterministic (NFA).

Definition
Given an automaton A, the word w is recognised by A if the (or
at least one) path starting at the initial state q0 and following the
edges with a labelling corresponding to w ends at a final state.
The language of A is the set of all words recognised by A.
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Subsequence Universality for Languages

Definition

▶ L is k-∃-universal iff there is a word in L which is k-universal.

▶ L is k-∀-universal iff every word in L is k-universal.

Problem
How efficient can we decide, given a language L defined by a finite
automaton A and an integer k, whether L is k-∃-universal
(k-ESU) or k-∀-universal (k-ASU)?
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k − ∃-universality

Result. Determining if a language L defined by a finite automa-
ton A is k − ∀-universal is NP-Complete even when k = 1.

Sketch. From the Hamiltonian Path problem.

▶ Take a graph G = (V ,E ) where n = |V |.
▶ Construct an automaton A recognising words of length

exactly n corresponding to paths of length n in G .

▶ Therefore, if any word corresponds to a path containing every
vertex in G , then that word corresponds to a Hamiltonian
path in G .

▶ As this path is the only one that can be 1-univerisal, L is
1− ∃-universal iff G has a Hamiltonian path.
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k − ∃-universality
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k-∃-universality – NP-membership

Lemma
If A accepts a k-universal word it also accepts a k-universal word
of length at most knσ

Sketch.

▶ If there is a translation labelled by x , for any x ∈ Σ, along any
path from the state q, then the shortest path from q
containing this transition has length at most n (i.e. the
number of states in the automaton).

▶ As each arch needs σ symbols, to get a one universal word, we
need a path of length at most n · σ (and thus a word of length
n · σ) to have a 1-universal word/path.
◦ N.B., this might note be an accepted word/path, just a
prefix of one.

▶ As we need k such arches, the maximum length of the
shortest k-universal word is nkσ.
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k-∃-universality – FPT

Theorem
Given an automaton A with n states over an alphabet of size σ,
we can decide k-ESU in O∗(n32σ) (where the star only hides
poly(σ)-factors resulting from arithmetic with large integers).
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k-∃-universality – FPT Outline

(i) Remove non-accessible and non-co-accessible states in O(n3)

(ii) Check whether there is a loop labelled with a 1-universal
word, if so accept independently from k.

(iii) Otherwise, for every q ∈ Q, find maximal set Vq of letters
occurring in a word βq which is label of a path from q to q
(Vq is unique since the path may contain q more than twice)
in O∗(n32σ).

(iv) We can maximise the universality of any word w ∈ L(A) by
pumping β2

q for every state q in an accepting path labelled
with w .

(v) Determine maximal universality of words in L(A) in O∗(n32σ)
with dynamic programming: let M[·][·] be an n × 2σ matrix
such that M[qr ][V ] is the maximal universality of a word w
labelling a path from q0 to qr such that r(w) = V .
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k − ∀-Universality

Result. Given a automaton A with n states, over an alphabet
of size σ, we can decide if A is k −∀-universal in O(n3σ) time.

Note. For any language L the set L∀ of words occurring as
subsequences in all words w ∈ L is finite (L∀ =

⋂
w∈L Subseq(w)

and Subseq(w) is finite) but can still be exponential in the length
of the shortest word in L.
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k − ∀-Universality-algorithm outline

(i) For q, q′ ∈ Q we define a relation Ra for every a ∈ Σ such
that qRaq

′ if and only if there is a state q′′ such that there is
a path from q to q′′ not containing any a and also a transition
from q′′ to q′ labelled by a.

(ii) Let qRq′ if and only if there is a ∈ Σ such that qRaq
′.

(iii) Let Q ′ = {q ∈ Q | there is a non-universal path from q to F}.
(iv) Let G = (V ,E ) be a directed graph with V = Q and

(q, q′) ∈ E if and only if qRq′.

(v) There is an ℓ-universal word, for an ℓ < k , accepted by A if
and only if there is a path of length at most k − 1 from q0 to
any node corresponding to a state in Q ′ in G .
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Counting and Ranking k-universal Words

Let L ⊂ Σ∗ be a formal language.

▶ The problem of counting words of L is to determine the size
of L.

▶ The problem of ranking a word w ∈ L is to determine the size
of the set {v ∈ L | v ≺ w} where ≺ is an arbitrary ordering of
Σ∗, e.g. the length-lexicographic ordering.

Note 1. Both problems are NP-hard as answering either with a
non-zero value shows that L is k − ∃-universal.
Note 2. In NFAs, as a word may correspond to multiple paths, we
instead count (resp. rank) the number of paths corresponding to a
k-universal word.
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Counting

Observation
The number of words accepted by an deterministic automaton A is
equal to the number of paths in A starting at q0 and ending at
some final state.
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Counting

Approach. To count the number of k-subsequence universal paths
accepted by the automaton A of length m.
Let T be a table of size m+1× k × n× 2σ where T [ℓ, c , q,R], for
ℓ ∈ [0,m], c ∈ [0, k − 1], q ∈ Q,R ⊂ Σ is the number of
c-universal paths of length ℓ ending at state q with a rest of
R.Then:

R ≠ ∅

T [ℓ, c , q,R] =
∑

q′ ∈ Q

x ∈ R

0 δ(q′, x) ̸= q

T [ℓ− 1, c , q′,R]+
T [ℓ− 1, c , q′,R \ {x}] δ(q′, x) = q

R = ∅

T [ℓ, c , q,R] =
∑

q′ ∈ Q

x ∈ Σ

{
δ(q′, x) ̸= q

T [ℓ− 1, c − 1, q′,Σ \ {x}]] δ(q′, x) = q
.
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Counting

▶ We use a second table U of size m + 1× n to collect the
number of k-universal paths of length 0 to m ending at state
q.

▶ Formally, U[ℓ, q] contains the number of k-universal paths of
length ℓ ending at state q.

▶ U is computed analagously to T .

▶ The total number of k-universal paths of length m is then
given by

∑
q∈F U[m, q].

Result. The number of k-universal paths of length (resp. at
most) m accepted by an automaton A containing n states, over
an alphabet of size σ can be computed in O∗(m2n2k2σ)
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Counting every k-universal word in the language

Observation. The automaton A accepts a k-universal word if
and only if A accepts a k-universal word of length at most knσ.

Result. The number of k-universal paths accepted by an au-
tomaton A containing n states, over an alphabet of size σ can
be computed in O(n4k32σ) time.
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Ranking

Result. The rank of a k-universal path p within the set of all
paths (resp. all paths of length at exactly/at most m) accepted
by an automaton A can be computed in O∗(n4k32′σ) time (reps.
O∗(m2n2k2′σ)).

Sketch.

▶ We use the same approach as for counting, however, now we
only allow paths with a prefix of the form p1p2 . . . pℓx where
p1p2 . . . pℓ is the prefix of p with length ℓ, and x < pℓ.

▶ This constraint can be integrated with the tables T and U in
the same way as counting.

▶ This gives the time complexity.
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Conclusion

Complexity.

Problem Complexity Class Best Algorithm

k − ∃-universality NP-Complete O∗(n32σ)

k − ∀-universality P O(n3σ)
Algorithms.

Type Length Complexity

Counting unrestricted O∗(n4k32σ)
Counting exactly m O∗(n2m2k2σ)
Counting at most m O∗(n2m2k2σ)

Ranking unrestricted O∗(n4k32σ)
Ranking exactly m O∗(n2m2k2σ)
Ranking at most m O∗(n2m2k2σ)

Thank you for listening!
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