

The Leverhulme Research Centre for Functional Materials Design

k-Universality of Regular Languages **Duncan Adamson**¹ Pamela Fleischmann² Annika Huch² Tore Koß³ Florin Manea³ Dirk Nowotka² ¹University of Liverpool, UK

²Kiel University, Germany

³University of Göttingen, Germany

Imperial College London

King Abdullah Universit of Science and Technol

Definition

A word v is a subsequence of the word w, if there exists a set of positions positions $1 \le i_1 < i_2 < \ldots < i_k \le |w|$, such that $v = w[i_1]w[i_2]\cdots w[i_k]$, otherwise, v is an **Absent Subsequence** of v. A word w is k-subsequence universal if **every** word of length k is a subsequence of w.

w = thethousandkyoto

Definition

A word v is a subsequence of the word w, if there exist positions $1 \le i_1 < i_2 < \ldots < i_k \le |w|$, such that $v = w[i_1]w[i_2]\cdots w[i_k]$, otherwise, v is an **Absent Subsequence** of v. A word w is k-subsequence universal if **every** word of length k is a subsequence of w.

$$v = tt$$

Definition

A word v is a subsequence of the word w, if there exist positions $1 \le i_1 < i_2 < \ldots < i_k \le |w|$, such that $v = w[i_1]w[i_2]\cdots w[i_k]$, otherwise, v is an **Absent Subsequence** of v. A word w is k-subsequence universal if **every** word of length k is a subsequence of w.

w = thethousand kyoto v = tenkyoto

Definition

A word v is a subsequence of the word w, if there exist positions $1 \le i_1 < i_2 < \ldots < i_k \le |w|$, such that $v = w[i_1]w[i_2]\cdots w[i_k]$, otherwise, v is an **Absent Subsequence** of v. A word w is k-subsequence universal if **every** word of length k is a subsequence of w.

k-Universality of Regular Languages

Definition

A word v is a subsequence of the word w, if there exist positions $1 \le i_1 < i_2 < \ldots < i_k \le |w|$, such that $v = w[i_1]w[i_2]\cdots w[i_k]$, otherwise, v is an **Absent Subsequence** of v. A word w is k-subsequence universal if **every** word of length k is a subsequence of w.

Subsequences and Universality

Notation. Subseq(w) denotes the set of subsequences of w, Subseq_k(w) denotes the set of subsequences of length exactly k.

A word w is k-universal if Subseq_k(w) = Σ^k .

 $\begin{aligned} \mathsf{Subseq(11100)} = \{1, 0, 00, 10, 11, 100, 110, 111, 1100, 1110, 11100\} \\ \mathsf{Subseq}_3(11100) = \{100, 110, 111\} \end{aligned}$

Universality Index

Definition

The universality index $\iota(w)$ is the unique integer such that w is $\iota(w)$ -universal but not $(\iota(w) + 1)$ -universal.

Definition (Arch-Factorisation, Hébrard 1991)

Let $w \in \Sigma^*$. Then $w = \operatorname{ar}_w(1) \cdots \operatorname{ar}_w(\iota(w))r(w)$ such that $\iota(\operatorname{ar}_w(i)) = 1$, the last letter of $\operatorname{ar}_w(i)$ occurs exactly once in $\operatorname{ar}_w(i)$ and $\iota(r(w)) = 0$. $\operatorname{ar}_w(i)$ are called the *arches of* w and r(w) is called the *rest of* w.

Arch Factorisation

W	= 1112223123321112	
	=(1112223)(123)(321)(112)	

$ar_1(w)$	=111222 3
$ar_2(w)$	=12 3
$ar_3(w)$	=321
r(w)	=112

 $\iota(w) = 3$

k-Universality of Regular Languages

Finite Automata

Definition

A finite automaton is a 5-tuple $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$, where Q is a finite set of states, Σ is an alphabet, $\delta : Q \times \Sigma \to 2^Q$ is the transition function, $q_0 \in Q$ is the initial state and $F \subseteq Q$ is a set of final states. If $|\delta(q, a)| \leq 1$ for all $q \in Q$ and $a \in \Sigma$ we call \mathcal{A} deterministic (DFA), otherwise we call it non-deterministic (NFA).

Definition

Given an automaton \mathcal{A} , the word w is **recognised** by \mathcal{A} if the (or at least one) path starting at the initial state q_0 and following the edges with a labelling corresponding to w ends at a final state. The **language** of \mathcal{A} is the set of **all** words recognised by \mathcal{A} .

Subsequence Universality for Languages

Definition

- ▶ *L* is k- \exists -universal iff there is a word in *L* which is k-universal.
- ▶ *L* is k- \forall -universal iff every word in *L* is k-universal.

Problem

How efficient can we decide, given a language L defined by a finite automaton A and an integer k, whether L is k- \exists -universal (k-ESU) or k- \forall -universal (k-ASU)?

$k - \exists$ -universality

Result. Determining if a language *L* defined by a finite automaton \mathcal{A} is $k - \forall$ -universal is NP-Complete even when k = 1.

Sketch. From the Hamiltonian Path problem.

- Take a graph G = (V, E) where n = |V|.
- ► Construct an automaton A recognising words of length exactly *n* corresponding to paths of length *n* in *G*.
- ► Therefore, if any word corresponds to a path containing every vertex in G, then that word corresponds to a Hamiltonian path in G.
- As this path is the only one that can be 1-universal, L is 1 − ∃-universal iff G has a Hamiltonian path.

$k - \exists$ -universality

$k - \exists$ -universality

k- \exists -universality – NP-membership

Lemma

If A accepts a k-universal word it also accepts a k-universal word of length at most ${\rm kn}\sigma$

Sketch.

- If there is a translation labelled by x, for any x ∈ Σ, along any path from the state q, then the shortest path from q containing this transition has length at most n (i.e. the number of states in the automaton).
- As each arch needs σ symbols, to get a one universal word, we need a path of length at most n ⋅ σ (and thus a word of length n ⋅ σ) to have a 1-universal word/path.
 - N.B., this might note be an accepted word/path, just a prefix of one.
- As we need k such arches, the maximum length of the shortest k-universal word is nkσ.

k-Universality of Regular Languages

$k-\exists$ -universality – FPT

Theorem

Given an automaton A with n states over an alphabet of size σ , we can decide k-ESU in $O^*(n^3 2^{\sigma})$ (where the star only hides poly(σ)-factors resulting from arithmetic with large integers).

k- \exists -universality – FPT Outline

- (i) Remove non-accessible and non-co-accessible states in $O(n^3)$
- (ii) Check whether there is a loop labelled with a 1-universal word, if so accept independently from k.
- (iii) Otherwise, for every $q \in Q$, find maximal set V_q of letters occurring in a word β_q which is label of a path from q to q $(V_q$ is unique since the path may contain q more than twice) in $O^*(n^3 2^{\sigma})$.
- (iv) We can maximise the universality of any word $w \in L(\mathcal{A})$ by pumping β_q^2 for every state q in an accepting path labelled with w.
- (v) Determine maximal universality of words in $L(\mathcal{A})$ in $O^*(n^3 2^{\sigma})$ with dynamic programming: let $M[\cdot][\cdot]$ be an $n \times 2^{\sigma}$ matrix such that $M[q_r][V]$ is the maximal universality of a word wlabelling a path from q_0 to q_r such that r(w) = V.

 $k - \forall$ -Universality

Result. Given a automaton \mathcal{A} with *n* states, over an alphabet of size σ , we can decide if \mathcal{A} is $k - \forall$ -universal in $O(n^3 \sigma)$ time.

Note. For any language L the set L^{\forall} of words occurring as subsequences in all words $w \in L$ is finite $(L^{\forall} = \bigcap_{w \in L} \text{Subseq}(w)$ and Subseq(w) is finite) but can still be exponential in the length of the shortest word in L.

 $k - \forall$ -Universality-algorithm outline

- (i) For q, q' ∈ Q we define a relation R_a for every a ∈ Σ such that qR_aq' if and only if there is a state q'' such that there is a path from q to q'' not containing any a and also a transition from q'' to q' labelled by a.
- (ii) Let qRq' if and only if there is $a \in \Sigma$ such that qR_aq' .
- (iii) Let $Q' = \{q \in Q \mid \text{there is a non-universal path from } q \text{ to } F\}$.
- (iv) Let G = (V, E) be a directed graph with V = Q and $(q, q') \in E$ if and only if qRq'.
- (v) There is an ℓ -universal word, for an $\ell < k$, accepted by \mathcal{A} if and only if there is a path of length at most k 1 from q_0 to any node corresponding to a state in Q' in G.

Counting and Ranking k-universal Words

Let $L \subset \Sigma^*$ be a formal language.

- ► The problem of counting words of *L* is to determine the size of *L*.
- The problem of ranking a word w ∈ L is to determine the size of the set {v ∈ L | v ≺ w} where ≺ is an arbitrary ordering of Σ*, e.g. the length-lexicographic ordering.

Note 1. Both problems are NP-hard as answering either with a non-zero value shows that *L* is $k - \exists$ -universal.

Note 2. In NFAs, as a word may correspond to multiple paths, we instead count (resp. rank) the number of paths corresponding to a k-universal word.

Counting

Observation

The number of words accepted by an deterministic automaton A is equal to the number of paths in A starting at q_0 and ending at some final state.

Counting

Approach. To count the number of k-subsequence universal paths accepted by the automaton \mathcal{A} of length m. Let T be a table of size $m + 1 \times k \times n \times 2^{\sigma}$ where $T[\ell, c, q, \mathcal{R}]$, for $\ell \in [0, m], c \in [0, k-1], q \in Q, \mathcal{R} \subset \Sigma$ is the number of *c*-universal paths of length ℓ ending at state *q* with a rest of \mathcal{R} . Then:

$$\begin{split} \mathcal{R} \neq \emptyset \\ T[\ell, c, q, \mathcal{R}] &= \sum_{\substack{q' \in Q \\ x \in \mathcal{R}}} \begin{cases} 0 & \delta(q', x) \neq q \\ T[\ell - 1, c, q', \mathcal{R}] + & \delta(q', x) = q \\ R = \emptyset \end{cases} \\ \mathcal{R} = \emptyset \\ T[\ell, c, q, \mathcal{R}] &= \sum_{\substack{q' \in Q \\ x \in \mathcal{R}}} \begin{cases} \delta(q', x) \neq q \\ T[\ell - 1, c - 1, q', \Sigma \setminus \{x\}] \end{bmatrix} & \delta(q', x) \neq q \\ T[\ell - 1, c - 1, q', \Sigma \setminus \{x\}] \end{bmatrix} \end{cases}$$

k-Universality of Regular Languager $\in \mathbf{Q}$

Counting

- ► We use a second table U of size m + 1 × n to collect the number of k-universal paths of length 0 to m ending at state q.
- ► Formally, U[ℓ, q] contains the number of k-universal paths of length ℓ ending at state q.
- U is computed analogously to T.
- ► The total number of k-universal paths of length m is then given by ∑_{q∈F} U[m, q].

Result. The number of k-universal paths of length (resp. at most) m accepted by an automaton \mathcal{A} containing n states, over an alphabet of size σ can be computed in $O^*(m^2n^2k2^{\sigma})$

Counting every k-universal word in the language

Observation. The automaton \mathcal{A} accepts a *k*-universal word if and only if \mathcal{A} accepts a *k*-universal word of length at most $kn\sigma$.

Result. The number of k-universal paths accepted by an automaton \mathcal{A} containing n states, over an alphabet of size σ can be computed in $O(n^4k^32^{\sigma})$ time.

Ranking

Result. The rank of a *k*-universal path *p* within the set of all paths (resp. all paths of length at exactly/at most *m*) accepted by an automaton \mathcal{A} can be computed in $O^*(n^4k^32'\sigma)$ time (reps. $O^*(m^2n^2k2'\sigma)$).

Sketch.

- We use the same approach as for counting, however, now we only allow paths with a prefix of the form p₁p₂...p_ℓx where p₁p₂...p_ℓ is the prefix of p with length ℓ, and x < p_ℓ.
- ► This constraint can be integrated with the tables *T* and *U* in the same way as counting.
- ► This gives the time complexity.

Conclusion

Complexity.

Problem	Complexity Class	Best Algorithm
$k - \exists$ -universality	NP-Complete	$O^{*}(n^{3}2^{\sigma})$
$k - \forall$ -universality	Р	$O(n^3\sigma)$

Algorithms.

Туре	Length	Complexity
Counting	unrestricted	$O^*(n^4k^32^{\sigma})$
Counting	exactly <i>m</i>	$O^*(n^2m^2k2^\sigma)$
Counting	at most <i>m</i>	$O^*(n^2m^2k2^{\sigma})$
Ranking	unrestricted	$O^*(n^4k^32^{\sigma})$
Ranking	exactly <i>m</i>	$O^{*}(n^{2}m^{2}k2^{\sigma})$
Ranking	at most <i>m</i>	$O^*(n^2m^2k2^\sigma)$

Conclusion

Complexity.

Problem	Complexity Class	Best Algorithm
$k - \exists$ -universality	NP-Complete	$O^{*}(n^{3}2^{\sigma})$
$k - \forall$ -universality	Р	$O(n^3\sigma)$

Algorithms.

Туре	Length	Complexity
Counting	unrestricted	$O^*(n^4k^32^{\sigma})$
Counting	exactly <i>m</i>	$O^*(n^2m^2k2^\sigma)$
Counting	at most <i>m</i>	$O^*(n^2m^2k2^\sigma)$
Ranking	unrestricted	$O^{*}(n^{4}k^{3}2^{\sigma})$
Ranking	exactly <i>m</i>	$O^*(n^2m^2k2^\sigma)$
Ranking	at most <i>m</i>	$O^*(n^2m^2k2^{\sigma})$

Thank you for listening!