The Leverhulme Research Centre for Functional Materials Design

k-Universality of Regular Languages
Duncan Adamson ${ }^{1}$ Pamela Fleischmann ${ }^{2}$ Annika Huch ${ }^{2}$ Tore Koß ${ }^{3}$ Florin Manea ${ }^{3}$ Dirk Nowotka ${ }^{2}$ ${ }^{1}$ University of Liverpool, UK
${ }^{2}$ Kiel University, Germany
${ }^{3}$ University of Göttingen, Germåny

Subsequences

Definition

A word v is a subsequence of the word w, if there exists a set of positions positions $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq|w|$, such that $v=w\left[i_{1}\right] w\left[i_{2}\right] \cdots w\left[i_{k}\right]$, otherwise, v is an Absent Subsequence of v. A word w is k-subsequence universal if every word of length k is a subsequence of w.

$$
w=\text { thethousandkyoto }
$$

Subsequences

Definition

A word v is a subsequence of the word w, if there exist positions $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq|w|$, such that $v=w\left[i_{1}\right] w\left[i_{2}\right] \cdots w\left[i_{k}\right]$, otherwise, v is an Absent Subsequence of v. A word w is k-subsequence universal if every word of length k is a subsequence of w.

$$
\begin{aligned}
& w=\text { thethousandkyoto } \\
& v=t t
\end{aligned}
$$

Subsequences

Definition

A word v is a subsequence of the word w, if there exist positions $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq|w|$, such that $v=w\left[i_{1}\right] w\left[i_{2}\right] \cdots w\left[i_{k}\right]$, otherwise, v is an Absent Subsequence of v. A word w is k-subsequence universal if every word of length k is a subsequence of w.

$$
\begin{aligned}
& w=\text { thethousand kyoto } \\
& v=\text { tenkyoto }
\end{aligned}
$$

Subsequences

Definition

A word v is a subsequence of the word w, if there exist positions $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq|w|$, such that $v=w\left[i_{1}\right] w\left[i_{2}\right] \cdots w\left[i_{k}\right]$, otherwise, v is an Absent Subsequence of v. A word w is k-subsequence universal if every word of length k is a subsequence of w.

$$
\begin{aligned}
& w=\text { thethousand kyoto } \\
& v=\text { tokyo }
\end{aligned}
$$

Subsequences

Definition

A word v is a subsequence of the word w, if there exist positions $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq|w|$, such that $v=w\left[i_{1}\right] w\left[i_{2}\right] \cdots w\left[i_{k}\right]$, otherwise, v is an Absent Subsequence of v. A word w is k-subsequence universal if every word of length k is a subsequence of w.

$$
\begin{aligned}
& w=\text { thethousand kyoto } \\
& v=\text { osaka }
\end{aligned}
$$

Subsequences and Universality

Notation. Subseq(w) denotes the set of subsequences of w, Subseq $_{k}(w)$ denotes the set of subsequences of length exactly k.

A word w is k-universal if $\operatorname{Subseq}_{k}(w)=\Sigma^{k}$.

$$
\begin{array}{r}
\text { Subseq }(11100)=\{1,0,00,10,11,100,110,111,1100,1110,11100\} \\
\operatorname{Subseq}_{3}(11100)=\{100,110,111\}
\end{array}
$$

Universality Index

Definition

The universality index $\iota(w)$ is the unique integer such that w is $\iota(w)$-universal but not $(\iota(w)+1)$-universal.

Definition (Arch-Factorisation, Hébrard 1991)
Let $w \in \Sigma^{*}$. Then $w=\operatorname{ar}_{w}(1) \cdots \operatorname{ar}_{w}(\iota(w)) r(w)$ such that $\iota\left(\operatorname{ar}_{w}(i)\right)=1$, the last letter of $\operatorname{ar}_{w}(i)$ occurs exactly once in $\operatorname{ar}_{w}(i)$ and $\iota(r(w))=0 . \operatorname{ar}_{w}(i)$ are called the arches of w and $r(w)$ is called the rest of w.

Arch Factorisation

$$
\begin{array}{ll}
w & =1112223123321112 \\
& =(1112223)(123)(321)(112) \\
& =1112223 \\
\mathrm{ar}_{1}(w) & =123 \\
\mathrm{ar}_{2}(w) & =321 \\
\mathrm{ar}_{3}(w) & =112 \\
r(w) & =3
\end{array}
$$

Finite Automata

> Definition
> A finite automaton is a 5-tuple $\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where Q is a finite set of states, Σ is an alphabet, $\delta: Q \times \Sigma \rightarrow 2^{Q}$ is the transition function, $q_{0} \in Q$ is the initial state and $F \subseteq Q$ is a set of final states. If $|\delta(q, a)| \leq 1$ for all $q \in Q$ and $a \in \Sigma$ we call \mathcal{A} deterministic (DFA), otherwise we call it non-deterministic (NFA).

Definition

Given an automaton \mathcal{A}, the word w is recognised by \mathcal{A} if the (or at least one) path starting at the initial state q_{0} and following the edges with a labelling corresponding to w ends at a final state.
The language of \mathcal{A} is the set of all words recognised by \mathcal{A}.

Subsequence Universality for Languages

Definition

- L is k - \exists-universal iff there is a word in L which is k-universal.
- L is k - \forall-universal iff every word in L is k-universal.

Problem

How efficient can we decide, given a language L defined by a finite automaton \mathcal{A} and an integer k, whether L is $k-\exists$-universal (k-ESU) or k - \forall-universal ($k-A S U$)?

$k-\exists$-universality

Result. Determining if a language L defined by a finite automaton \mathcal{A} is $k-\forall$-universal is NP-Complete even when $k=1$.

Sketch. From the Hamiltonian Path problem.

- Take a graph $G=(V, E)$ where $n=|V|$.
- Construct an automaton \mathcal{A} recognising words of length exactly n corresponding to paths of length n in G.
- Therefore, if any word corresponds to a path containing every vertex in G, then that word corresponds to a Hamiltonian path in G.
- As this path is the only one that can be 1-univerisal, L is 1 - \exists-universal iff G has a Hamiltonian path.

$k-\exists$-universality

$k-\exists$-universality

k- - -universality - NP-membership

Lemma

If \mathcal{A} accepts a k-universal word it also accepts a k-universal word of length at most kn σ

Sketch.

- If there is a translation labelled by x, for any $x \in \Sigma$, along any path from the state q, then the shortest path from q containing this transition has length at most n (i.e. the number of states in the automaton).
- As each arch needs σ symbols, to get a one universal word, we need a path of length at most $n \cdot \sigma$ (and thus a word of length $n \cdot \sigma$) to have a 1-universal word/path.
- N.B., this might note be an accepted word/path, just a prefix of one.
- As we need k such arches, the maximum length of the shortest k-universal word is $n k \sigma$.

k-ヨ-universality - FPT

Theorem
Given an automaton \mathcal{A} with n states over an alphabet of size σ, we can decide k-ESU in $O^{*}\left(n^{3} 2^{\sigma}\right)$ (where the star only hides poly (σ)-factors resulting from arithmetic with large integers).

k- \exists-universality - FPT Outline

(i) Remove non-accessible and non-co-accessible states in $O\left(n^{3}\right)$
(ii) Check whether there is a loop labelled with a 1-universal word, if so accept independently from k.
(iii) Otherwise, for every $q \in Q$, find maximal set V_{q} of letters occurring in a word β_{q} which is label of a path from q to q (V_{q} is unique since the path may contain q more than twice) in $O^{*}\left(n^{3} 2^{\sigma}\right)$.
(iv) We can maximise the universality of any word $w \in L(\mathcal{A})$ by pumping β_{q}^{2} for every state q in an accepting path labelled with w.
(v) Determine maximal universality of words in $L(\mathcal{A})$ in $O^{*}\left(n^{3} 2^{\sigma}\right)$ with dynamic programming: let $M[\cdot][\cdot]$ be an $n \times 2^{\sigma}$ matrix such that $M\left[q_{r}\right][V]$ is the maximal universality of a word w labelling a path from q_{0} to q_{r} such that $r(w)=V$.

$k-\forall$-Universality

Result. Given a automaton \mathcal{A} with n states, over an alphabet of size σ, we can decide if \mathcal{A} is $k-\forall$-universal in $O\left(n^{3} \sigma\right)$ time.

Note. For any language L the set L^{\forall} of words occurring as subsequences in all words $w \in L$ is finite $\left(L^{\forall}=\bigcap_{w \in L}\right.$ Subseq (w) and Subseq (w) is finite) but can still be exponential in the length of the shortest word in L.

k - \forall-Universality-algorithm outline

(i) For $q, q^{\prime} \in Q$ we define a relation R_{a} for every $a \in \Sigma$ such that $q R_{a} q^{\prime}$ if and only if there is a state $q^{\prime \prime}$ such that there is a path from q to $q^{\prime \prime}$ not containing any a and also a transition from $q^{\prime \prime}$ to q^{\prime} labelled by a.
(ii) Let $q R q^{\prime}$ if and only if there is $a \in \Sigma$ such that $q R_{a} q^{\prime}$.
(iii) Let $Q^{\prime}=\{q \in Q \mid$ there is a non-universal path from q to $F\}$.
(iv) Let $G=(V, E)$ be a directed graph with $V=Q$ and $\left(q, q^{\prime}\right) \in E$ if and only if $q R q^{\prime}$.
(v) There is an ℓ-universal word, for an $\ell<k$, accepted by \mathcal{A} if and only if there is a path of length at most $k-1$ from q_{0} to any node corresponding to a state in Q^{\prime} in G.

Counting and Ranking k-universal Words

Let $L \subset \Sigma^{*}$ be a formal language.

- The problem of counting words of L is to determine the size of L.
- The problem of ranking a word $w \in L$ is to determine the size of the set $\{v \in L \mid v \prec w\}$ where \prec is an arbitrary ordering of Σ^{*}, e.g. the length-lexicographic ordering.
Note 1. Both problems are NP-hard as answering either with a non-zero value shows that L is $k-\exists$-universal.
Note 2. In NFAs, as a word may correspond to multiple paths, we instead count (resp. rank) the number of paths corresponding to a k-universal word.

Counting

Observation

The number of words accepted by an deterministic automaton \mathcal{A} is equal to the number of paths in \mathcal{A} starting at q_{0} and ending at some final state.

Counting

Approach. To count the number of k-subsequence universal paths accepted by the automaton \mathcal{A} of length m.
Let T be a table of size $m+1 \times k \times n \times 2^{\sigma}$ where $T[\ell, c, q, \mathcal{R}]$, for $\ell \in[0, m], c \in[0, k-1], q \in Q, \mathcal{R} \subset \Sigma$ is the number of c-universal paths of length ℓ ending at state q with a rest of \mathcal{R}. Then:
$\mathcal{R} \neq \emptyset$
$T[\ell, c, q, \mathcal{R}]=\sum_{q^{\prime} \in Q}\left\{\begin{array}{ll}0 & \delta\left(q^{\prime}, x\right) \neq q \\ & T\left[\ell-1, c, q^{\prime}, \mathcal{R}\right]+ \\ T\left[\ell-1, c, q^{\prime}, \mathcal{R} \backslash\{x\}\right]\end{array} \quad \delta\left(q^{\prime}, x\right)=q\right.$
$\mathcal{R}=\emptyset$
$T[\ell, c, q, \mathcal{R}]=\sum\left\{\begin{array}{l}\delta\left(q^{\prime}, x\right) \neq q \\ \left.T\left[\ell-1, c-1, q^{\prime}, \Sigma \backslash\{x\}\right]\right] \quad \delta\left(q^{\prime}, \underset{13}{\prime}\right)=116\end{array}\right.$.

Counting

- We use a second table U of size $m+1 \times n$ to collect the number of k-universal paths of length 0 to m ending at state q.
- Formally, $U[\ell, q]$ contains the number of k-universal paths of length ℓ ending at state q.
- U is computed analagously to T.
- The total number of k-universal paths of length m is then given by $\sum_{q \in F} U[m, q]$.

Result. The number of k-universal paths of length (resp. at most) m accepted by an automaton \mathcal{A} containing n states, over an alphabet of size σ can be computed in $O^{*}\left(m^{2} n^{2} k 2^{\sigma}\right)$

Counting every k-universal word in the language

Observation. The automaton \mathcal{A} accepts a k-universal word if and only if \mathcal{A} accepts a k-universal word of length at most $k n \sigma$.

Result. The number of k-universal paths accepted by an automaton \mathcal{A} containing n states, over an alphabet of size σ can be computed in $O\left(n^{4} k^{3} 2^{\sigma}\right)$ time.

Ranking

Result. The rank of a k-universal path p within the set of all paths (resp. all paths of length at exactly/at most m) accepted by an automaton \mathcal{A} can be computed in $O^{*}\left(n^{4} k^{3} 2^{\prime} \sigma\right)$ time (reps. $O^{*}\left(m^{2} n^{2} k 2^{\prime} \sigma\right)$).

Sketch.

- We use the same approach as for counting, however, now we only allow paths with a prefix of the form $p_{1} p_{2} \ldots p_{\ell} x$ where $p_{1} p_{2} \ldots p_{\ell}$ is the prefix of p with length ℓ, and $x<p_{\ell}$.
- This constraint can be integrated with the tables T and U in the same way as counting.
- This gives the time complexity.

Conclusion

Complexity.

Problem	Complexity Class	Best Algorithm
$k-\exists$-universality	NP-Complete	$O^{*}\left(n^{3} 2^{\sigma}\right)$
$k-\forall$-universality	P	$O\left(n^{3} \sigma\right)$

Algorithms.

Type	Length	Complexity
Counting	unrestricted	$O^{*}\left(n^{4} k^{3} 2^{\sigma}\right)$
Counting	exactly m	$O^{*}\left(n^{2} m^{2} k 2^{\sigma}\right)$
Counting	at most m	$O^{*}\left(n^{2} m^{2} k 2^{\sigma}\right)$
Ranking	unrestricted	$O^{*}\left(n^{4} k^{3} 2^{\sigma}\right)$
Ranking	exactly m	$O^{*}\left(n^{2} m^{2} k 2^{\sigma}\right)$
Ranking	at most m	$O^{*}\left(n^{2} m^{2} k 2^{\sigma}\right)$

Conclusion

Complexity.

Problem	Complexity Class	Best Algorithm
$k-\exists$-universality	NP-Complete	$O^{*}\left(n^{3} 2^{\sigma}\right)$
$k-\forall$-universality	P	$O\left(n^{3} \sigma\right)$

Algorithms.

Type	Length	Complexity
Counting	unrestricted	$O^{*}\left(n^{4} k^{3} 2^{\sigma}\right)$
Counting	exactly m	$O^{*}\left(n^{2} m^{2} k 2^{\sigma}\right)$
Counting	at most m	$O^{*}\left(n^{2} m^{2} k 2^{\sigma}\right)$
Ranking	unrestricted	$O^{*}\left(n^{4} k^{3} 2^{\sigma}\right)$
Ranking	exactly m	$O^{*}\left(n^{2} m^{2} k 2^{\sigma}\right)$
Ranking	at most m	$O^{*}\left(n^{2} m^{2} k 2^{\sigma}\right)$

Thank you for listening!

